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Abstract

Boosted decision trees are among the most
popular learning techniques in use today.
While exhibiting fast speeds at test time, rel-
atively slow training renders them impracti-
cal for applications with real-time learning
requirements. We propose a principled ap-
proach to overcome this drawback. We prove
a bound on the error of a decision stump
given its preliminary error on a subset of
the training data; the bound may be used
to prune unpromising features early in the
training process. We propose a fast train-
ing algorithm that exploits this bound, yield-
ing speedups of an order of magnitude at no
cost in the final performance of the classifier.
Our method is not a new variant of Boosting;
rather, it is used in conjunction with exist-
ing Boosting algorithms and other sampling
methods to achieve even greater speedups.

1. Introduction

Boosting is one of the most popular learning tech-
niques in use today, combining many weak learners to
form a single strong one (Schapire, 1990; Freund, 1995;
Freund & Schapire, 1996). Shallow decision trees are
commonly used as weak learners due to their simplicity
and robustness in practice (Quinlan, 1996; Breiman,
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1998; Ridgeway, 1999; Kotsiantis, 2007). This power-
ful combination (of Boosting and decision trees) is the
learning backbone behind many state-of-the-art meth-
ods across a variety of domains such as computer vi-
sion, behavior analysis, and document ranking to name
a few (Dollár et al., 2012; Burgos-Artizzu et al., 2012;
Asadi & Lin, 2013), with the added benefit of exhibit-
ing fast speed at test time.

Learning speed is important as well. In active or real-
time learning situations such as for human-in-the-loop
processes or when dealing with data streams, classifiers
must learn quickly to be practical. This is our motiva-
tion: fast training without sacrificing accuracy. To this
end, we propose a principled approach. Our method
offers a speedup of an order of magnitude over prior
approaches while maintaining identical performance.

The contributions of our work are the following:

1. Given the performance on a subset of data, we
prove a bound on a stump’s classification error,
information gain, Gini impurity, and variance.

2. Based on this bound, we propose an algorithm
guaranteed to produce identical trees as classical
algorithms, and experimentally show it to be one
order of magnitude faster for classification tasks.

3. We outline an algorithm for quickly Boosting de-
cision trees using our quick tree-training method,
applicable to any variant of Boosting.

In the following sections, we discuss related work,
inspect the tree-boosting process, describe our algo-
rithm, prove our bound, and conclude with experi-
ments on several datasets, demonstrating our gains.
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2. Related Work

Many variants of Boosting (Freund & Schapire, 1996)
have proven to be competitive in terms of prediction
accuracy in a variety of applications (Bühlmann &
Hothorn, 2007), however, the slow training speed of
boosted trees remains a practical drawback. Accord-
ingly, a large body of literature is devoted to speeding
up Boosting, mostly categorizable as: methods that
subsample features or data points, and methods that
speed up training of the trees themselves.

In many situations, groups of features are highly cor-
related. By carefully choosing exemplars, an entire set
of features can be pruned based on the performance
of its exemplar. (Dollár et al., 2007) propose cluster-
ing features based on their performances in previous
stages of boosting. (Kégl & Busa-Fekete, 2009) parti-
tion features into many subsets, deciding which ones
to inspect at each stage using adversarial multi-armed
bandits. (Paul et al., 2009) use random projections
to reduce the dimensionality of the data, in essence
merging correlated features.

Other approaches subsample the data. In Weight-
trimming (Friedman, 2000), all samples with weights
smaller than a certain threshold are ignored. With
Stochastic Boosting (Friedman, 2002), each weak
learner is trained on a random subset of the data. For
very large datasets or in the case of on-line learning,
elaborate sampling methods have been proposed, e.g.
Hoeffding trees (Domingos & Hulten, 2000) and Fil-
ter Boost (Domingo & Watanabe, 2000; Bradley &
Schapire, 2007). To this end, probabilistic bounds can
be computed on the error rates given the number of
samples used (Mnih et al., 2008). More recently, Lam-
inating (Dubout & Fleuret, 2011) trades off number of
features for number of samples considered as training
progresses, enabling constant-time Boosting.

Although all these methods can be made to work in
practice, they provide no performance guarantees.

A third line of work focuses on speeding up training
of decision trees. Building upon the C4.5 tree-training
algorithm of (Quinlan, 1993), using shallow (depth-D)
trees and quantizing features values into B�N bins
leads to an efficient O(D×K×N) implementation where
K is the number of features, and N is the number of
samples (Wu et al., 2008; Sharp, 2008).

Orthogonal to all of the above methods is the use
of parallelization; multiple cores or GPUs. Recently,
(Svore & Burges, 2011) distributed computation over
cluster nodes for the application of ranking; however,
reporting lower accuracies as a result. GPU imple-
mentations of GentleBoost exist for object detection

(Coates et al., 2009) and for medical imaging using
Probabilistic Boosting Trees (PBT) (Birkbeck et al.,
2011). Although these methods offer speedups in their
own right, we focus on the single-core paradigm.

Regardless of the subsampling heuristic used, once a
subset of features or data points is obtained, weak
learners are trained on that subset in its entirety. Con-
sequently, each of the aforementioned strategies can be
viewed as a two-stage process; in the first, a smaller
set of features or data points is collected, and in the
second, decision trees are trained on that entire subset.

We propose a method for speeding up this second
stage; thus, our approach can be used in conjunc-
tion with all the prior work mentioned above for even
greater speedup. Unlike the aforementioned methods,
our approach provides a performance guarantee: the
boosted tree offers identical performance to one with
classical training.

3. Boosting Trees

A boosted classifier (or regressor) having the form
H (x) =

!
t αt ht(x) can be trained by greedily min-

imizing a loss function L; i.e. by optimizing scalar
αt and weak learner ht(x) at each iteration t. Be-
fore training begins, each data sample x i is assigned a
non-negative weight wi (which is derived from L). Af-
ter each iteration, misclassified samples are weighted
more heavily thereby increasing the severity of mis-
classifying them in following iterations. Regardless of
the type of Boosting used (i.e. AdaBoost, LogitBoost,
L2Boost, etc.), each iteration requires training a new
weak learner given the sample weights. We focus on
the case when the weak learners are shallow trees.

3.1. Training Decision Trees

A decision tree hTREE(x) is composed of a stump hj(x)
at every non-leaf node j. Trees are commonly grown
using a greedy procedure as described in (Breiman
et al., 1984; Quinlan, 1993), recursively setting one
stump at a time, starting at the root and working
through to the lower nodes. Each stump produces a
binary decision; it is given an input x ∈ RK , and is
parametrized with a polarity p ∈ {±1}, a threshold
τ ∈ R, and a feature index k ∈ {1, 2, ...,K}:

hj(x) ≡ pj sign
"
x [kj ]− τj

#

[where x[k] indicates the k
th feature (or dimension) of x]

We note that even in the multi-class case, stumps are
trained in a similar fashion, with the binary decision
discriminating between subsets of the classes. How-
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ever, this is transparent to the training routine; thus,
we only discuss binary stumps.

In the context of classification, the goal in each stage
of stump training is to find the optimal parameters
that minimize ε, the weighted classification error:

ε ≡ 1

Z

$
wi 1{h(xi ) �=yi }, Z ≡

$
wi

[where 1{...} is the indicator function]

In this paper, we focus on classification error; however,
other types of split criteria (i.e. information gain, Gini
impurity, or variance) can be derived in a similar form;
please see supplementary materials for details. For
binary stumps, we can rewrite the error as:

ε(k) =
1

Z

%$

xi [k]≤τ

wi 1{yi =+p} +
$

xi [k]>τ

wi 1{yi =−p}

&

In practice, this error is minimized by selecting the
single best feature k∗ from all of the features:

{p∗, τ∗, k∗} = argmin
p,τ,k

ε(k), ε∗ ≡ ε(k
∗)

In current implementations of Boosting (Sharp, 2008),
feature values can first be quantized into B bins by
linearly distributing them in [1, B] (outer bins corre-
sponding to the min/max, or to a fixed number of
standard deviations from the mean), or by any other
quantization method. Not surprisingly, using too few
bins reduces threshold precision and hence overall per-
formance. We find that B = 256 is large enough to
incur no loss in practice.

Determining the optimal threshold τ∗ requires accu-
mulating each sample’s weight into discrete bins cor-
responding to that sample’s feature value x i[k]. This
procedure turns out to still be quite costly: for each
of the K features, the weight of each of the N samples
has to be added to a bin, making the stump training
operation O(K×N) – the very bottleneck of training
boosted decision trees.

In the following sections, we examine the stump-
training process in greater detail and develop an in-
tuition for how we can reduce computational costs.

3.2. Progressively Increasing Subsets

Let us assume that at the start of each Boosting itera-
tion, the data samples are sorted in order of decreasing
weight, i.e: wi ≥ wj ∀ i < j . Consequently, we define
Zm, the mass of the heaviest subset of m data points:

Zm ≡
$

i≤m

wi [note: ZN ≡ Z]

Clearly, Zm is greater or equal to the sum of any m
other sample weights. As we increase m, the m-subset
includes more samples, and accordingly, its mass Zm

increases (although at a diminishing rate).

In Figure 1, we plot Zm/Z for progressively increas-
ing m-subsets, averaged over multiple iterations. An
interesting empirical observation can be made about
Boosting: a large fraction of the overall weight is ac-
counted for by just a few samples. Since training time
is dependent on the number of samples and not on
their cumulative weight, we should be able to leverage
this fact and train using only a subset of the data. The
more non-uniform the weight distribution, the more we
can leverage; Boosting is an ideal situation where few
samples are responsible for most of the weight.
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Figure 1. Progressively increasing m-subset mass using
different variants of Boosting. Relative subset mass Zm/Z
exceeds 90% after only m ≈ 7% of the total number of
samples N in the case of AdaBoost or m/N ≈ 20% in the
case of L2Boost.

The same observation was made by (Friedman et al.,
2000), giving rise to the idea of weight-trimming, which
proceeds as follows. At the start of each Boosting it-
eration, samples are sorted in order of weight (from
largest to smallest). For that iteration, only the sam-
ples belonging to the smallest m-subset such that
Zm/Z ≥ η are used for training (where η is some prede-
fined threshold); all the other samples are temporarily
ignored – or trimmed. Friedman et al. claimed this to
“dramatically reduce computation for boosted models
without sacrificing accuracy.” In particular, they pre-
scribed η = 90% to 99% “typically”, but they left open
the question of how to choose η from the statistics of
the data (Friedman et al., 2000).

Their work raises an interesting question: Is there a
principled way to determine (and train on only) the
smallest subset after which including more samples
does not alter the final stump? Indeed, we can prove
that a relatively small m-subset contains enough in-
formation to set the optimal stump, and thereby save
a lot of computation.
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3.3. Preliminary Errors

DeÞnition: given a feature k and an m-subset, the

best preliminary error ε(k)m is the lowest achievable
training error if only the data points in that subset
were considered. Equivalently, this is the reported er-
ror if all samples not in that m-subset are trimmed.

ε(k)m ≡ 1

Zm

%$

i≤m
xi [k]≤τ (k )

m

wi 1{yi =+p(k )
m } +

$

i≤m
xi [k]>τ (k )

m

wi 1{yi =−p(k )
m }

&

[where p(k)m and τ (k)
m are optimal preliminary parameters]

The emphasis on preliminary indicates that the subset
does not contain all data points, i.e: m < N , and the
emphasis on best indicates that no choice of polarity
p or threshold τ can lead to a lower preliminary error
using that feature.

As previously described, given a feature k, a stump
is trained by accumulating sample weights into bins.
We can view this as a progression; initially, only a few
samples are binned, and as training continues, more

and more samples are accounted for; hence, ε(k)m may
be computed incrementally which is evident in the
smoothness of the traces.
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Figure 2. Traces of the best preliminary errors over in-
creasing Zm/Z. Each curve corresponds to a different fea-
ture. The dashed orange curve corresponds to a feature
that turns out to be misleading (i.e. its final error dras-
tically worsens when all the sample weights are accumu-
lated). The thick green curve corresponds to the optimal
feature; note that it is among the best performing features
even when training with relatively few samples.

Figure 2 shows the best preliminary error for each of
the features in a typical experiment. By examining
Figure 2, we can make four observations:

1. Most of the overall weight is accounted for by the
first few samples. (This can be seen by comparing
the top and bottom axes in the figure)

2. Feature errors increasingly stabilize as m → N

3. The best performing features at smallerm-subsets
(i.e. Zm/Z < 80%) can end up performing quite
poorly once all of the weights are accumulated
(dashed orange curve)

4. The optimal feature is among the best features for
smaller m-subsets as well (solid green curve)

From the full training run shown in Figure 2, we note
(in retrospect) that using an m-subset with m ≈ 0.2N
would suffice in determining the optimal feature. But
how can we know a priori which m is good enough?
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Figure 3. Probability that the optimal feature is among
the K top-performing features. The red curve corresponds
to K = 1, the purple to K = 10, and the blue to K = 1% of
all features. Note the knee-point around Zm/Z ≈ 75% at
which the optimal feature is among the 10 preliminary-best
features over 95% of the time.

Averaging over many training iterations, in Figure 3,
we plot the probability that the optimal feature is
among the top-performing features when trained on
only an m-subset of the data. This gives us an idea as
to how small m can be while still correctly predicting
the optimal feature.

From Figure 3, we see that the optimal feature is
not amongst the top performing features until a large
enough m-subset is used – in this case, Zm/Z ≈ 75%.
Although “optimality” is not quite appropriate to use
in the context of greedy stage-wise procedures (such as
boosted trees), consistently choosing sub-optimal pa-
rameters at each stump empirically leads to substan-
tially poorer performance, and should be avoided. In
the following section, we outline our approach which
determines the optimal stump parameters using the
smallest possible m-subset.
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4. Pruning Underachieving Features

Figure 3 suggests that the optimal feature can often
be estimated at a fraction of the computational cost
using the following heuristic:

Faulty Stump Training

1. Train each feature only using samples in the m-
subset where Zm/Z ≈ 75%.

2. Prune all but the 10 best performing features.
3. For each of un-pruned feature, complete training

on the entire data set.
4. Finally, report the best performing feature (and

corresponding parameters).

This heuristic does not guarantee to return the opti-
mal feature, since premature pruning can occur in step
2. However, if we were somehow able to bound the er-
ror, we would be able to prune features that would
provably underachieve (i.e. would no longer have any
chance of being optimal in the end).

DeÞnition: a feature k is denoted underachieving
if it is guaranteed to perform worse than the best-so-
far feature k� on the entire training data.

Proposition 1: for a feature k, the following bound
holds (proof given in Section 4.2): given two subsets
(where one is larger than the other), the product of
subset mass and preliminary error is always greater
for the larger subset:

m ≤ n ⇒ Zmε(k)m ≤ Znε
(k)
n (1)

Let us assume that the best-so-far error ε� has been
determined over a few of the features (and the param-
eters that led to this error have been stored). Hence,
this is an upper-bound for the error of the stump cur-
rently being trained. For the next feature in the queue,
even after a smaller (m < N)-subset, then:

Zmε(k)m ≥ Zε� ⇒ Zε(k) ≥ Zε� ⇒ ε(k) ≥ ε�

Therefore, if: Zmε(k)m ≥ Zε� then feature k is under-
achieving and can safely be pruned. Note that the
lower the best-so-far error ε�, the harsher the bound;
consequently, it is desirable to train a relatively low-
error feature early on.

Accordingly, we propose a new method based on com-
paring feature performance on subsets of data, and
consequently, pruning underachieving features:

Quick Stump Training

1. Train each feature only using data in a relatively
small m-subset.

2. Sort the features based on their preliminary —–
errors (from best to worst)

3. Continue training one feature at a time on —–

progressively larger subsets, updating ε(k)m

• if it is underachieving, prune immediately.

• if it trains to completion, save it as best-so-far.
4. Finally, report the best performing feature (and

corresponding parameters).

4.1. Subset Scheduling

Deciding which schedule of m-subsets to use is a sub-
tlety that requires further explanation. Although this
choice does not effect the optimality of the trained
stump, it may effect speedup. If the first “relatively
small” m-subset (as prescribed in step 1) is too small,
we may lose out on low-error features leading to less-
harsh pruning. If it is too large, we may be doing
unnecessary computation. Furthermore, since the cal-
culation of preliminary error does incur some (albeit,
low) computational cost, it is impractical to use every
m when training on progressively larger subsets.

To address this issue, we implement a simple sched-
ule: The first m-subset is determined by the param-
eter ηkp such that Zm/Z ≈ ηkp. M following subsets
are equally spaced out between ηkp and 1. Figure 4
shows a parameter sweep over ηkp and M , from which
we fix ηkp = 90% and M = 20 and use this setting for
all of our experiments.

ηkp

M

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1
5
10
20
50
100
200

Figure 4. Computational cost of training boosted trees
over a range of ηkp and M , averaged over several types
of runs (with varying numbers and depths of trees). Red
corresponds to higher cost, blue to lower cost. The lowest
computational cost is achieved at ηkp = 90% and M = 20.

Using our quick stump training procedure, we deter-
mine the optimal parameters without having to con-
sider every sample for each feature. By pruning un-
derachieving features, a lot of computation is saved.
We now outline the full Boosting procedure using our
quick training method:
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Quickly Boosting Decision Trees

1. Initialize weights (sorted in decreasing order).
2. Train decision tree ht (one node at a time) using

the Quick Stump Training method.
3. Perform standard Boosting steps:

(a) determine optimal αt (i.e. using line-search).

(b) update sample weights given the misclassifica-

tion error of ht and the variant of Boosting used.

(c) if more Boosting iterations are needed, sort

sample weights in decreasing order, increment it-

eration number t, and goto step 2.

We note that sorting the weights in step 3(c) above
is an O(N) operation. Given an initially sorted set,
Boosting updates the sample weights based on whether
the samples were correctly classified or not. All cor-
rectly classified samples are weighted down, but they
maintain their respective ordering. Similarly, all mis-
classified samples are weighted up, also maintaining
their respective ordering. Finally, these two sorted lists
are merged in O(N).

We now give a proof for the bound that our method is
based on, and in the following section, we demonstrate
its effectiveness in practice.

4.2. Proof of Proposition 1

As previously defined, ε(k)m is the preliminary weighted
classification error computed using the feature k on
samples in the m-subset; hence:

Zmε(k)m =
$

i≤m
xi [k]≤τ (k )

m

wi 1{yi =+p(k )
m } +

$

i≤m
xi [k]>τ (k )

m

wi 1{yi =−p(k )
m }

Proposition 1: m ≤ n ⇒ Zmε(k)m ≤ Znε
(k)
n

Proof: ε(k)m is the best achievable preliminary error

on the m-subset (and correspondingly, {p(k)m , τ (k)m } are
the best preliminary parameters); therefore:

Zmε(k)m ≤
$

i≤m

xi [k]≤τ
�

wi 1{yi =+p} +
$

i≤m

xi [k]>τ
�

wi 1{yi =−p} ∀ p, τ

Hence, switching the optimal parameters {p(k)m , τ (k)m }
for potentially sub-optimal ones {p(k)n , τ (k)n } (note the
subtle change in indices):

Zmε(k)m ≤
$

i≤m
xi [k]≤τ (k )

n

wi 1{yi =+p(k )
n } +

$

i≤m
xi [k]>τ (k )

n

wi 1{yi =−p(k )
n }

Further, by summing over a larger subset (n ≥ m),
the resulting sum can only increase:

Zmε(k)m ≤
$

i≤n
xi [k]≤τ (k )

n

wi 1{yi =+p(k )
n } +

$

i≤n
xi [k]>τ (k )

n

wi 1{yi =−p(k )
n }

But the right-hand side is equivalent to Znε
(k)
n ; hence:

Zmε(k)m ≤ Znε
(k)
n

Q.E.D.

For similar proofs using information gain, Gini impu-
rity, or variance minimization as split criteria, please
see the supplementary material.

5. Experiments

In the previous section, we proposed an efficient
stump training algorithm and showed that it has a
lower expected computational cost than the traditional
method. In this section, we describe experiments that
are designed to assess whether the method is practical
and whether it delivers significant training speedup.
We train and test on three real-world datasets and
empirically compare the speedups.

5.1. Datasets

We trained Ada-Boosted ensembles of shallow decision
trees of various depths, on the following three datasets:

1. CMU-MIT Faces dataset (Rowley et al., 1996);
8.5·103 training and 4.0 ·103 test samples, 4.3·103
features used are the result of convolutions with
Haar-like wavelets (Viola & Jones, 2004), using
2000 stumps as in (Viola & Jones, 2004).

2. INRIA Pedestrian dataset (Dalal & Triggs, 2005);
1.7 ·104 training and 1.1 ·104 test samples, 5.1 ·
103 features used are Integral Channel Features
(Dollár et al., 2009). The classifier has 4000
depth-2 trees as in (Dollár et al., 2009).

3. MNIST Digits (LeCun & Cortes, 1998); 6.0 ·104
training and 1.0 ·104 test samples, 7.8·102 features
used are grayscale pixel values. The ten-class clas-
sifier uses 1000 depth-4 trees based on (Kégl &
Busa-Fekete, 2009).

5.2. Comparisons

Quick Boosting can be used in conjunction with all
previously mentioned heuristics to provide further
gains in training speed. We report all computational
costs in units proportional to Flops, since running time
(in seconds) is dependent on compiler optimizations
which are beyond the scope of this work.
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Figure 5. Computational cost versus training loss (left plots) and versus test error (right plots) for the various heuristics
on three datasets: (a1,2) CMU-MIT Faces, (b1,2) INRIA Pedestrians, and (c1,2) MNIST Digits [see text for details].
Dashed lines correspond to the “quick” versions of the heuristics (using our proposed method) and solid lines correspond
to the original heuristics. Test error is defined as the area over the ROC curve.

In Figure 5, we plot the computation cost versus train-
ing loss and versus test error. We compare vanilla (no
heuristics) AdaBoost, Weight-Trimming with η = 90%
and 99% [see Section 3.2], LazyBoost 90% and 50%
(only 90% or 50% randomly selected features are used
to train each weak learner), and StochasticBoost (only
a 50% random subset of the samples are used to train

each weak learner). To these six heuristics, we apply
our method to produce six “quick” versions.

We further note that our goal in these experiments is
not to tweak and enhance the performance of the clas-
sifiers, but to compare the performance of the heuris-
tics with and without our proposed method.
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Figure 6. Relative (x-fold) reduction in test error (area
over the ROC) due to our method, given a fixed computa-
tional cost. Triplets of bars of the same color correspond to
the three datasets: CMU-MIT Faces, INRIA Pedestrians,
and MNIST Digits.

5.3. Results and Discussion

From Figure 5, we make several observations. “Quick”
versions require less computational costs (and produce
identical classifiers) as their slow counterparts. From
the training loss plots (5a1, 5b1, 5c1), we gauge the
speed-up offered by our method; often around an or-
der of magnitude. Quick-LazyBoost-50% and Quick-
StochasticBoost-50% are the least computationally-
intensive heuristics, and vanilla AdaBoost always
achieves the smallest training loss and attains the low-
est test error in two of the three datasets.

The motivation behind this work was to speed up
training such that: (i) for a fixed computational bud-
get, the best possible classifier could be trained, and
(ii) given a desired performance, a classifier could be
trained with the least computational cost.

For each dataset, we find the lowest-cost heuristic and
set that computational cost as our budget. We then
boost as many weak learners as our budget permits for
each of the heuristics (with and without our method)
and compare the test errors achieved, plotting the rela-
tive gains in Figure 6. For most of the heuristics, there
is a two to eight-fold reduction in test error, whereas
for weight-trimming, we see less of a benefit. In fact,
for the second dataset, Weight-Trimming-90% runs at
the same cost with and without our speedup.

Conversely, in Figure 7, we compare how much less
computation is required to achieve the best test er-
ror rate by using our method for each heuristic. Most
heuristics see an eight to sixteen-fold reduction in com-
putational cost, whereas for weight-trimming, there is
still a speedup, albeit again, a much smaller one (be-
tween one and two-fold).
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Figure 7. Relative speedup in training time due to our
proposed method to achieve the desired minimal error
rate. Triplets of bars of the same color correspond to the
three datasets. CMU-MIT Faces, INRIA Pedestrians, and
MNIST Digits.

As discussed in Section 3.2, weight-trimming acts sim-
ilarly to our proposed method in that it prunes fea-
tures, although it does so naively - without adhering
to a provable bound. This results in a speed-up (at
times almost equivalent to our own), but also leads to
classifiers that do not perform as well as those trained
using the other heuristics.

6. Conclusions

We presented a principled approach for speeding up
training of boosted decision trees. Our approach is
built on a novel bound on classification or regression
error, guaranteeing that gains in speed do not come at
a loss in classification performance.

Experiments show that our method is able to reduce
training cost by an order of magnitude or more, or
given a computational budget, is able to train classi-
fiers that reduce errors on average by two-fold or more.

Our ideas may be applied concurrently with other
techniques for speeding up Boosting (e.g. subsampling
of large datasets) and do not limit the generality of the
method, enabling the use of Boosting in applications
where fast training of classifiers is key.
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Ron Appel Thomas Fuchs Piotr Doll«ar Pietro Perona

In the main text of the paper, we prove a bound on the misclassiÞcation error on a preliminary subset of the
data, given as Proposition 1:

m ≤ n ⇒ Zmεm ≤ Znεn

Using this bound, we are able to prune features early and speed up the training of decision trees using the
classiÞcation error criterion. In this document, we prove the same bound on other common types of stump
splitting criteria: information gain, Gini purity, and variance minimization, extending our method for use with
regression trees as well as binary or multi-class classiÞcation trees.

In a decision tree, an input propagates down the tree (based on the tree parameters) until it reaches a single leaf
node. The optimal tree parameters are those that lead to the best error based on the training data. Recall that
an n-subset is the set ofn datapoints with the largest weights. We deÞneρj to be the set of elements in the
n-subset that are assigned to leafj using the optimal tree parameters (when trained on then-subset). We deÞne
the sum of the weights of elements that belong to that leafj as Zρj and the sum of the weights of elements in
ρj with class y asZy

ρj

Zn ≡
�

i≤n

wi Zρj ≡
�

i∈ρj

wi Zy
ρj

≡
�

i∈ρj

wi 1{yi=y}

In regression, elements have valuesyi ∈ Rd and we deÞne the weighted average value of a leaf as:

÷yρj ≡ 1
Zρj

�

i∈ρj

wi yi

Given an n-subset of data (with n ≤ N ), the preliminary error is computed by summing the error in each leaf,
proportionally weighted by the total mass of samples belonging to that leaf:

εn =
�

j

Zρj

Zn
ερj which we reformulate as: Znεn =

�

j

Zρjερj

Our goal is to show that for each leafj, the product of preliminary error and subset mass always exceeds that
of a smaller subset. Letuj be the elements inρj that are in an m-subset and øuj be the elements that arenot,
wherem ≤ n:

uj ≡ {i | i ∈ ρj , i ≤ m}, øuj ≡ {i | i ∈ ρj , i > m} [Note that: uj ∪ ūj = ρj ]

Zuj ≡
�

i∈uj

wi Zy
uj

≡
�

i∈uj

wi 1{yi=y} Zūj ≡
�

i∈ūj

wi Zy
ūj

≡
�

i∈ūj

wi 1{yi=y}

The optimal tree parameters for the m-subset might be di!erent than those for the n-subset; hence, the use of
potentially sub-optimal parameters may lead to a worse error. Accordingly, in the following section, we Þnalize
our proof by showing: Zρjερj ≥ Zujεuj ∀j

⇒ Znεn =
�

j

Zρjερj ≥
�

j

Zujεuj ≥ Zmεm
Q.E.D.

Note that this proof applies to trees of any depth and any number of leaves, not just binary stumps.
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The following proofs are based on inequalities which are given at the end.

Misclassification

εn ≡
�

j

Zρj

Zn

�
1−

Z
yj
ρj

Zρj

�
⇒ Znεn =

�

j

Zρj ερj� �� �
(Zρj − Zyj

ρj
)

Zρjερj = Zρj − Zyj
ρj

= (Zuj + Zūj )− (Zyj
uj

+ Z
yj
ūj
) = Zuj − Zyj

uj� �� �
Zuj εuj

+ Zūj − Z
yj
ūj� �� �

Zūj εūj≥0

Information Gain

εn ≡
�

j

Zρj

Zn

�
−
�

y

Zy
ρj

Zρj

ln

�Zy
ρj

Zρj

��
⇒ Znεn =

�

j

Zρj ερj� �� �
�
−
�

y

Zy
ρj

ln

�Zy
ρj

Zρj

��

Zρjερj = −
�

y

Zy
ρj

ln

�Zy
ρj

Zρj

�
= −

�

y

(Zy
uj
+Zy

ūj
) ln

�Zy
uj

+ Zy
ūj

Zuj + Zūj

�
≥

�
−
�

y

Zy
uj

ln

�Zy
uj

Zuj

��

� �� �
Zuj εuj

+

�
−
�

y

Zy
ūj

ln

�Zy
ūj

Zūj

��

� �� �
Zūj εūj≥0

The proof for Information Gain Ratio is a trivial adaptation of the proof above.

Gini Impurity

εn ≡
�

j

Zρj

Zn

�

y

Zy
ρj

Zρj

�
1−

Zy
ρj

Zρj

�
⇒ Znεn =

�

j

Zρj ερj� �� ��
Zρj −

�

y

(Zy
ρj
)2

Zρj

�

Zρjερj = Zρj −
�

y

(Zy
ρj
)2

Zρj

= (Zuj + Zūj )−
�

y

(Zy
uj

+ Zy
ūj
)2

Zuj + Zūj

≥
�
Zuj −

�

y

(Zy
uj
)2

Zuj

�

� �� �
Zuj εuj

+

�
Zūj −

�

y

(Zy
ūj
)2

Zūj

�

� �� �
Zūj εūj≥0

Variance Minimization

εn ≡
�

j

Zρj

Zn

�

i∈ρj

wi

Zρj

|yi − ỹρj |2 ⇒ Znεn =

�

j

Zρj ερj� �� ��
�

i∈ρj

wi|yi|2 −
|Zρj ỹρj |2

Zρj

�

Zρjερj =

�

i∈ρj

wi|yi|2 −
|Zρj ỹρj |2

Zρj

=

�

i∈uj

wi|yi|2 +
�

i∈ūj

wi|yi|2 −
|Zuj ỹuj + Zūj ỹūj |2

(Zuj + Zūj )

≥
�

�

i∈uj

wi|yi|2 −
|Zuj ỹuj |2

Zuj

�

� �� �
Zuj εuj

+

�
�

i∈ūj

wi|yi|2 −
|Zūj ỹūj |2

Zūj

�

� �� �
Zūj εūj≥0
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Inequalities

For positive scalars a, b ≥ 0 and α,β > 0, the following inequality holds:

(a+ b) ln
� a+ b

α+ β

�
≤ a ln

� a

α+ β

�
+ b ln

� b

α+ β

�
= a ln

� a

α
· α

α+ β

�
+ b ln

� b

β
· β

α+ β

�

= a ln
� a

α

�
+ b ln

� b

β

�
−

�
a ln

�
1 +

β

α

�
+ b ln

�
1 +

α

β

��

� �� �
! 0

⇒ (a+ b) ln
� a+ b

α+ β

�
≤ a ln

� a

α

�
+ b ln

� b

β

�

For any vectors (or scalars) a,b and positive scalars α,β > 0, the following inequality holds:

|a+ b|2

α+ β
=

|a|2 + |b|2

α+ β
+

2�a,b�
α+ β

=
|a|2

α

�
1− β

α+ β

�
+

|b|2

β

�
1− α

α+ β

�
+

2�a,b�
α+ β

=
|a|2

α
+

|b|2

β
− |β a− αb|2

αβ(α+ β)� �� �
! 0

⇒ |a+ b|2

α+ β
≤ |a|2

α
+

|b|2

β


