Abstract

In object recognition in general and in face detection in particular, data
alignment is necessary to achieve good classification results with certain
statistical learning approaches such as Viola-Jones. Data can be aligned in
one of two ways: (1) by separating the data into coherent groups and training
separate classifiers for each; (2) by adjusting training samples so they lie in
correspondence. If done manually, both procedures are labor intensive and
can significantly add to the cost of labeling. In this paper we present a unified
boosting framework for simultaneous learning and alignment. We present a
novel boosting algorithm for Multiple Pose Learning (mpl), where the goal is
to simultaneously split data into groups and train classifiers for each. We also
review Multiple Instance Learning (mil), and in particular mil-boost, and
describe how to use it to simultaneously train a classifier and bring data into
correspondence. We show results on variations of LFW and MNIST,
demonstrating the potential of these approaches.

Gradient Boosting Review

* Boosting trains a strong classifier of the form h(z E[ Lach
* For a given loss function L, perform gradient descent in
function space. Each step is one weak classifier.
e Leth; — h(x;), and i = —Fn .
* At step t we want a weak classifier that is close to the gradient:
hy = argmax;, 1" wih(x;)

h;

-0L

Simultaneous Learning and Alignment:
Multi-Instance and Multi-Pose Learning

Boris Babenko!
1 Computer Science and Engineering

University of California, San Diego
{bbabenko, sj b} @s. ucsd. edu

Multiple Instance Learning (MIL)

Piotr Dollar?

Zhuowen Tu?

2 Electrical Engineering,

California Institute of Technology
pdol | ar @al t ech. edu

Zhuowen. t u@ oni

Overview
* Goal: simultaneously train classifier
and bring data into correspondence.

¢ Training data consists of:
bags: X; = {wi1, ..., Gim}
bag labels: {1, ..., Yn}

* Bag labels defined as % = max;{#i;} but instance
labels are unknown during training (latent variables).

MIL-BOOST

[ Re-derivation of Viola et al. 2005]

* Define bag probability as a softmax of instance probabilities:
pi = 9 (pij) = 9i(0(2hi;))

* Derivative of the loss function gives us the instance weights:
AL _ OL Op; Opiy
Ohy; Op: Opij Ohy;

¢ Algorithm Summary:

Input: Dataset {X1,..., Xt {yr,. . Yntbyi € {=1,1}
1: for t =1 to 1" do

2:  Compute weights w;; = — 2=

oh,

3: Train weak classifier h; usingjweights Jwij|
he = argminy, 37,5 L(h(ziy) # yi)lwis]

4: Find « via line search to minimize £(h)
a; = argmin, £(h+ ahy)

5: Update strong classifier h « h + ahe.

Serge Belongie!?

3 Lab of Neuro Imaging
University of California, Los Angeles

6: end for
function space
¢ Log likelihood is a standard loss function that we will use:
o) = =7 (L — Dlogpi+ 1y — —1)log(1 - ) Experiments
where pi = IP(y; — 1]y) .
pysa—
: . E B RealMil-NOR| N3 -}
MILBoost Detections: ol |'M ReaMier W Realli-NOR
o |= |'H RealMi-GM o 4 Ada-Aligned
203 = | M RealMi-LSE 2 osfe:
z v
[ 2ol Foo v
Approximating Max - 1 oy
pp g Z B S 1 O T
False Pos False Pos
aileg) Bgslee) /P domain
(Boydetal) ST [ oxeox; - | RealMi-NOR| ¢, [E RealMi-NOR|
) ; 041=7 RealMil-ISR 04 Ada
GM 0] ’ ? M RealMi-GM o F 4 Ada-Aligned
NOR [U J] L_||_ ﬁ 03| . RealMil-LSE %un z
S 02 2 03]
ISR 10,1] - B
01 i e T i
Table 1+ Four softmax approximations ge(re) = e () o oo “%“a‘aﬂ
False Pos False Pos

.ucl a. edu

Multiple Pose Learning (MPL)

Overview

* Goal: simultaneously group the
positive data, and train classifiers
h', ..., h" for each of the K groups.

« Training data given in standard form.

¢ Instance labels are defined as ¥; = man‘{y?}
where 1/,’” is a latent (unknown) variable, which is
positive if example i is in group k.

MPL-BOOST

* Define probability as a softmax of probabilities determined by each classifier:
pi = ge(pf) = gi(0(2hy))
* Derivative of the loss function gives us the instance weights for each classifier:
9L _ oL dp; Ot

8h* — Op; dpk ank
X i i i
e Algorithm Summary:
Input: Dataset {z1,..., sk Ay, oy by € (=111 K
1: for t =1 to T" do
2:  for k=1to K do
3: Compute weights wf = —%,;
4: Train weak classifier hf using weights \u’ﬂ
hf = argmin, 3, 1(h(z:) # yi)|wf]
5: Find a; via line search to minimize £(-, h*, )
oy = argmin, L(-,h" + ahl, )
G: Update strong classifier h* — h* + afaf.
T end for
8: end for
. -
H MpI-NOR|
Experiments R\ N v
2°% == Mpl-GM
Z o007 == Mpl-LSE
3 oo Ada
- 005
004
] oo o1 o o
Faise Pos False Pos
22232222
PRCIEENEYSIEIFA
722222
2 A2




