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Figure 1: In many applications, detection speed is as important as accuracy. (a) A
standard pipeline for performing modern multiscale detection is to create a densely
sampled image pyramid, compute features at each scale, and finally perform sliding
window classification (with a fixed scale model). Although effective; the creation
of the feature pyramid can dominate the cost of detection, leading to slow multi-
scale detection. (b) Viola and Jones [6] utilized shift and scale invariant features,
allowing a trained detector to be placed at any location and scale without relying on
an image pyramid. Constructing such a classifier pyramid results in fast multiscale
detection; unfortunately, most features are not scale invariant, including gradient
histograms, significantly limiting the generality of this scheme. (c) We propose a
fast method for approximating features at multiple scales using a sparsely sampled
image pyramid with a step size of an entire octave and within each octave we use
a classifier pyramid. The proposed approach achieves nearly the same accuracy
as using densely sampled image pyramids, with nearly the same speed as using a
classifier pyramid applied to an image at a single scale.

We demonstrate a multiscale pedestrian detector operating in near real
time with state-of-the-art detection performance. The computational bot-
tleneck of many modern detectors is the construction of an image pyra-
mid, typically sampled at 8-16 scales per octave, and associated feature
computations at each scale. We propose a technique to avoid constructing
such a finely sampled image pyramid without sacrificing performance:
our key insight is that for a broad family of features, including gradient
histograms, the feature responses computed at a single scale can be used
to approximate feature responses at nearby scales. This allows us to de-
couple the sampling of the image pyramid from the sampling of detection
scales. An overview of our approach is shown if Figure 1.

Figure 2: Approximating features in resampled images. For each image set, we
take the original image (cyan border) and generate an upsampled (blue) and down-
sampled (yellow) version. Shown at each scale are the image (center), gradient
magnitude (right), and gradient orientation (bottom). At each scale we compute
a gradient histogram with 8 bins, adjusted according to the approximations de-
veloped in the paper. Assuming these approximations hold, the three normalized
gradient histograms should be roughly equal. In the first case, the approximations
are fairly accurate. In the second case, showing a highly structured Brodatz texture
with significant high frequency content, the downsampling approximation fails.

In order to understand how information behaves in resampled images,
we turn to the study of natural image statistics. Ruderman and Bialek
[5] showed that various statistics of natural images are independent of
the scale at which the images were captured, or in other words, that the
statistics of an image are independent of the scene area corresponding
to a single pixel. Using this observation, we derive an exponential law
governing how feature responses vary with changes in scale, which can in
turn be used to predict features in resampled images (see Figure 2). That
such an approach is possible is not entirely trivial and relies on the fractal

structure of the visual world; nevertheless, the mathematical foundations
we develope should be readily applicable to other problems. Full details
are given in the paper.
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Shapelet [0.01 fps]

MultiFtr [0.02 fps]

HikSvm [0.04 fps]

HOG [0.05 fps]

VJ [0.09 fps]

LatSvm−V1 [0.10 fps]

PoseInv [0.10 fps]

LatSvm−V2 [0.16 fps]

ChnFtrs [0.28 fps]

FPDW [2.67 fps]

Figure 3: Time versus detection rate at 1 false positive per image on 640 ×
480 images from the Caltech Pedestrian Dataset [4] for detecting pedestrians 50
pixels and up (times are much faster for larger pedestrians/smaller images). Run
times of all algorithms are normalized to the rate of a single modern machine.
FPDW obtains a speedup of about 10-100 compared to competing methods with a
detection rate within a few percent of best reported performance.

For the detection experiments, we adopted the ChnFtrs detector de-
scribed in [3]. No re-training was necessary for this work; instead, we
rescale the pre-trained ChnFtrs detector [3] using the approximations de-
veloped in the paper. We refer to our method as the ‘Fastest Pedestrian
Detector in the West’ (FPDW). Detailed timing results are reported in
Figure 3. In Figure 4 we show full-image results on two datasets [2, 4]. In
all cases the detection rate of FPDW is within 1-2% of the top performing
algorithm, and always quite close to the original ChnFtrs classifier, all
while being 1-2 orders of magnitude faster than competing methods. The
proposed approach is general and should be widely applicable.
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(a) INRIA Results
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(b) Caltech ‘Reasonable’ Results

Figure 4: Detection results on the INRIA [2] and Caltech [4] pedestrian datasets
(legends are ordered by miss rate at 1 false positive per image – lower is better).
Results on additional datasets and under varying scenarios can be found in the pa-
per and online at [1]. In all cases the detection rate of FPDW is within a few percent
of ChnFtrs while being 1-2 orders of magnitude faster than all competing methods.
Evaluation scripts, detector descriptions, and additional results are available at [1].
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