Multiple Component Learning (MCL)

- **Derivation**
 - No assumptions about input space
 - Only needs weak classifiers for arbitrary $g(x) = \langle h, x \rangle$ (e.g., $h \in \mathbb{R}^d$)
 - For example, can use \mathcal{G} (sets) in place of \mathcal{H}
 - Can therefore use MIL to train weak classifier
 - MIL learns a function $h^* = \arg\min_h \mathbb{E}(\text{Error}(\mathcal{H}, h, \mathcal{D}))$
 - Only need to adjust MIL to take weights

- **Algorithm**
 - Training a feature 1. Large amount of data needed 2. Evaluating all components slow (currently working on improving speed)
 - Standard $F_i(x) = \arg\min_h \mathbb{E}(\text{Error}(\mathcal{H}, h, \mathcal{D}))$
 - Set $\alpha_i = \frac{1}{m} \log(1 - \text{Error}(F_i))$
 - Set $A_{ij}(t) = \alpha_t \log(1 - \text{Error}(F_i))$
 - Output the final classifier $\mathcal{F}(X) = \arg\min_{\mathcal{F}} \sum_i \alpha_i F_i(X)$

- **Other Applications**
 - Speaker Identification
 - Text independent handwriting identification
 - 2 people, 2 pages of text each
 - Hair features on 5000 patches
 - Writer Identification
 - Content independent speaker identification
 - 2 people, 2 pages of text each
 - Standard MCL features

- **Set Learning**
 - Standard MIL, MCL

- **Goals**
 1. Learn part-based classifier with weak supervision
 2. Part models are classifiers from rich hypothesis class (rather than Gaussian distributions, templates, etc.)
 3. No complex inference since model is discriminative

- **Overview**
 - **(1) Learning a single part**
 - Weakly supervised learning
 - Object location in positive images unknown
 - Developed for learning objects, use for parts
 - We use Multiple Instance Learning (MIL)
 - **(2) Learning diverse parts**
 - What prevents learning same part repeatedly?
 - Different weighting of data
 - Not all parts expressed in all images
 - **(3) Combining part detectors**
 - Boosting offers way of combining multiple diverse classifiers
 - Train one weak (part) classifier using MIL
 - No weight samples according to current error
 - Repeat until training error sufficiently low

- **Pedestrian Detection**
 - Low-level features
 - Features for component classifiers
 - Haars over multiple channels: gray (1), grad (1), quantized grad (6)
 - Incorporating Spatial Relations
 - Features for overall classifier
 - Densely compute component responses C_i
 - Final classifier retrained with Haars over C_i

- **Multiple Component Learning (MCL)**
 - Boosting
 - Input: N training examples x_i, with $y_i \in \{-1, 1\}$ and $x_i = (x_{i1}, \ldots, x_{id})$, and initial data, of weights $w_i(1) = 1$ over the examples.
 - Iteration $t = 1, \ldots, T$:
 - Train a set classifier $F_t: \mathcal{X} \rightarrow \{-1, 1\}$ using distribution D_t. Let $P_t(x_i) = \mathbb{E} (\mathcal{F}(x_i)) = (2 \times \mathbb{E}(\mathcal{F}(x_i)), 0 - 1)$, where D_t is the distribution over the examples.
 - Calculate error of F_t: $\text{Error}(F_t) = \frac{1}{N} \sum_i \mathbb{1}(y_i \neq \mathcal{F}(x_i))$
 - Set $\alpha_t = \frac{1}{2} \log(1 - \text{Error}(F_t))$
 - Set $A_{ij}(t) = \alpha_t \log(1 - \text{Error}(F_t))$
 - Output the final classifier $\mathcal{F}(x) = \arg\min_{\mathcal{F}} \sum_i \alpha_i F_i(x)$

- **Results on INRIA Data**
 - We achieve state of the art results.

- **Summary**
 - Advantages:
 1. General notion of parts (components)
 2. Component learning weakly supervised
 3. Principled, general algorithm
 4. State of the art results with simple features
 - Disadvantages:
 1. Large amount of data needed
 2. Evaluating all components slow (currently working on improving speed)