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Abstract. Cascades help make sliding window object detection fast,
nevertheless, computational demands remain prohibitive for numerous
applications. Currently, evaluation of adjacent windows proceeds inde-
pendently; this is suboptimal as detector responses at nearby locations
and scales are correlated. We propose to exploit these correlations by
tightly coupling detector evaluation of nearby windows. We introduce
two opposing mechanisms: detector excitation of promising neighbors
and inhibition of inferior neighbors. By enabling neighboring detectors
to communicate, crosstalk cascades achieve major gains (4-30× speedup)
over cascades evaluated independently at each image location. Combined
with recent advances in fast multi-scale feature computation, for which
we provide an optimized implementation, our approach runs at 35-65 fps
on 640× 480 images while attaining state-of-the-art accuracy.

1 Introduction

In many applications, fast detection is as important as accurate detection. No-
table recent efforts for increasing detection speed include work by Felzenszwalb
et al. [1] and Pedersoli et al. [2] on cascaded and coarse-to-fine deformable part
models, respectively, Lampert et al.’s [3] application of branch and bound search
for detection, and Dollár et al.’s [4] and Benenson et al.’s [5] work on the theory
and application of fast multi-scale features for detection.

Nevertheless, a majority of detectors remain slow. For most of the 15 pedes-
trian detectors surveyed in [6], detection time is best measured in seconds per
frame (as opposed to frames per second). In this work our goal is to achieve
frame-rate detection on 640× 480 images, i.e. detection at 30 fps or higher. We
explicitly avoid the ambiguous phrase real-time detection (e.g. a recent paper
reported ‘real-time’ detection rates of under 4 fps on low resolution images).

Detector speed is determined by the speed of both the features and classifier.
We provide an optimized implementation of the fast multi-scale features pro-
posed in [4] and introduce a novel framework which couples cascade evaluations
at nearby locations. By allowing neighboring detectors to communicate, compu-
tational cost is greatly reduced (see Figure 1). The resulting crosstalk cascades
achieve 4-30 fold reduction in the number of evaluated weak classifiers.

Crosstalk cascades operate at 45 fps while matching state-of-the-art detection
accuracy and 55-65 fps at slightly higher miss rates. These are 6× and greater
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Fig. 1. Each column represents one cascade evaluation, green spheres represent evalu-
ated cascade stages, and the red circles represent locally maximum detector responses.
Left: In standard cascades, each location is evaluated in isolation. Right: Through
a combination of excitation and inhibition, crosstalk cascades can significantly reduce
computation, requiring fewer overall weak classifier evaluations.

speedups over [4], the fastest detector surveyed in [6]. Computation of the multi-
scale features (with no detector evaluations) runs at 70 fps (∼3× speedup over
[4]). All reported runtimes are on a single core of a modern PC.

The most competitive approach to our own is [5], whose GPU implementa-
tion of [4], along with improved handling of scales, runs at 50 fps on monocular
images. The improvements suggested in [5] are orthogonal to our own and could
be combined. Other related work can be broken down as follows. A significant
body of work exists on optimizing cascades [7–12]; however, in all existing work
each image window is evaluated independently. Research on fast feature extrac-
tion [7, 13, 4] is complementary to our own. [14–16] propose to first compute a
sparse set of detector responses and then sample more densely around promising
locations; we use similar intuition for excitation of promising neighbors, but do
so during every stage of detection for greater gains. Finally, research on opti-
mizing other types of classifiers [1–3, 17–19] is of considerable interest, however,
such methods have difficulty matching the speed achieved by boosted classifiers.

The rest of this paper is organized as follows. We describe our optimized
feature implementation and baseline detector in §2. In §3 we explore lower and
upper bounds on the performance of cascades. We describe crosstalk cascades
and an unsupervised learning approach for tuning their speed in §4. Finally, in
§5, we compare accuracy and speed to existing approaches.

2 Baseline Detector

Channel features [20, 4] have state-of-the-art performance and are among the
fastest in the literature. Given an input image, several channels (e.g. gradient,
color) with the same dimensions are computed. Sums over rectangular channel
regions serve as features and can be computed efficiently using integral images
[7]. In multi-scale detection, features are typically computed over a dense image
pyramid. Instead, [4] showed how to leverage the observation that statistics of
natural images follow a power law to accurately approximate features at nearby
image scales using channels computed over a sparse image pyramid.



Crosstalk Cascades 3

Fig. 2. Left: Our baseline detector (baseline) outperforms [20] and the best reported
results on INRIA with a log-average miss rate of 17%. Slightly jittering the training
data degrades performance slightly but increases detector correlations. Right: Increas-
ing the number of weak classifiers k in the detector trained with jitter ±2 improves
performance and using k = 4096 is necessary to achieve state of the art accuracy.

We re-implement the channel features with a focus on low-level optimization.
We use the same channels as [4]: gradient magnitude (1 channel), histogram
of oriented gradients (6 channels), and LUV color channels (3 channels). For
each scale, all 10 channels are downsampled by a factor of 2 for further speed
improvements (for details see addendum to [20] available online). The functions
make extensive use of SSE instructions but are implemented on a single CPU;
further gains could be obtained using multiple cores or a GPU as in [5].

For 640×480 images, computation of sparse feature pyramids with one scale
per octave runs at ∼70 fps on a modern PC (a 4× speedup from [4]). The sparse
feature pyramid can be used to obtain detector responses at all scales by ‘resam-
pling’ a trained detector by up to half an octave as described [4]. In contrast,
the traditional approach of computing a dense image pyramid with 8-10 scales
per octave is over 4× slower. Benenson et al. [5] describe an extension of [4]
that can be used to obtain detector responses at all scales using feature com-
puted at just the original scale, doing so would give a ∼25% speedup. Additional
speedups of up to 50% are possible by removing gradient normalization, image
smoothing, etc., but result in noticeably decreased performance. Our optimized
implementation of channel features is available online.

For our baseline detector we use a similar setup to [20]. We apply AdaBoost
[21] to train and combine 4096 depth-two trees using a pool of 30,000 random
candidate features computed over the channels described above. Training with
multiple rounds of bootstrapping takes ∼10 minutes (a parallelized implementa-
tion of training takes ∼3 minutes). The default step size used in the detector is
4 pixels and 8 scales per octave. We closely follow implementation details from
[20] for bootstrapping, non-maximum suppression, etc.

Our baseline detector outperforms the best reported results on INRIA [22].
Results are shown in Figure 2 (left). As in [6], we plot miss rate against false
positives per image (FPPI) and summarize performance using log-average miss
rate (MR) between 10−2 and 100 FPPI. The MR of our baseline, averaged over
the eight random trials, is 17% (MRs for individual trials ranges from 16% to
19%). In comparison, the best reported results in [6] have a MR of 20% for
Felzenszwalb et al. [23] and between 21%-22% for the detectors in [20, 4].
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Fig. 3. Region of support (ROS) for our detector trained with jitter for various number
of weak classifiers k. Key observations: (1) for every k the ROS has non-negligible
extent σ and (2) σ decreases with increasing k. These observations inform our design
of crosstalk cascades; in particular we exploit that correlations are strongest in early
stages of detection but continue to have non-negligible support for all k.

2.1 Detector Correlations

Detector responses at nearby positions and scales are correlated. In the ter-
minology of [15], every detector has a region of support (ROS) which is the
neighborhood around a positive location in which the response remains positive.
A detector’s ROS is determined by the features, discriminability of the classifier,
and alignment of the training data. We focus on the latter two factors.

First, we can increase detector correlations by ‘jittering’ the training data (we
replace every positive sample with nine samples offset by ±j pixels). Performance
for the baseline and various j (jitter ±j) are shown in Figure 2. Using j = 2
degrades performance slightly to 19.4% MR but results in stronger detector
correlations. We therefore use jitter ±2 in all remaining experiments.

We compute the ROS by averaging detector responses across multiple win-
dows whose center contains a locally maximum response and we record the ROS’s
standard deviation σ. In Figure 3 (top) we show the ROS for the detector for
various number of weak classifiers k. For every k the ROS has a non-negligible
extent (σ ≥ 3). In previous work [14–16] a similar observation for the complete
detector was used as a basis for fast detection schemes that compute a sparse
set of responses and then sample more densely around promising locations.

In this work we exploit that correlations are present at all values of k. In
fact, the extent of the detector’s ROS decreases with increasing k. Intuitively this
makes sense: we expect the extent of a detector’s ROS to be inversely related
to its discriminative power, which in this case is determined by k (see Figure 2
(right)). The strong correlation present for every k motivate our approach of
allowing neighboring detectors to communicate during classification.

3 Bounds on Soft Cascades

The seminal work of Viola and Jones [7] popularized cascades for fast detec-
tion. A number of subsequent papers have addressed drawbacks of the original
cascades [10–12]; however, perhaps the simplest and most elegant solution was
proposed by Bourdev and Brandt in the form ‘soft cascades’ [8]. Instead of hav-
ing multiple distinct cascade stages, a single boosted classifier is trained and only
post-training are rejection thresholds set (with one threshold per weak classifier).



Crosstalk Cascades 5

Fig. 4. Left: Soft cascades with thresholds θk = θ∗ for all k. Numbers in brackets in-
dicate MR/speedup. Using θ∗ = −1 leaves detection accuracy virtually unchanged (all
curves with θ∗ ≤ −1 overlap nearly perfectly) but results in a ∼120× speedup. Right:
Soft cascades with thresholds θk = θ∗ + φk/K, which are equivalent to recalibrating a
detector and using constant rejection thresholds (see text). Depending on the desired
target recall, φ can be set appropriately for additional speedups relative to θk = θ∗.

A boosted classifier H consisting of K weak classifiers has the form:

H(x) = HK(x) =

K∑
i=1

αihi(x), (1)

where each hi is a weak classifier (with output −1 or 1) and αi is its associated
weight. x is classified as positive if H(x) > 0 and H(x) serves as the confidence.
We can define a sequence of score functions Hk(x) for k < K in an analogous
manner. During evaluation, a soft cascade tests each Hk(x) against a rejection
threshold θk, and if Hk(x) < θk computation stops. Various strategies for setting
the θk have been proposed [8, 9], we postpone a discussion to §4.1.

3.1 Constant Rejection Thresholds

We begin by describing a simple heuristic for setting θk that will serve as a
lower bound on the effectiveness of soft cascades: we simply set θk = θ∗ for all
k for some θ∗ ≤ 0. Resulting ROC curves for various choices of θ∗ are shown in
Figure 4 (left). In the plot legend we report ‘[MR/speedup]’ on INRIA [22] for
each method. Setting θ∗ = −1 leaves detection accuracy virtually unchanged but
results in a ∼120× speedup. Specifically, on average only 35 weak classifiers are
evaluated per classification as opposed to all k = 4096 for the original detector.

Why is setting θk = θ∗ effective? Boosting attempts to train a function H
s.t. H(x) > 0 if and only if x is positive. However, this observation holds for
all intermediate classifiers Hk for k < K (which are trained using an identical
procedure to H). In practice, it is rare that H(x) >> 0 while Hk(x) << 0 for
any k. By setting θk = θ∗ ≤ 0, we are exploiting the fact that if H(x) > 0 it is
unlikely that Hk(x) < θ∗ (with the likelihood decreasing with decreasing θ∗).

Constant rejection thresholds can be extended to reject all detections such
that H(x) < φ by recalibrating H. Let H ′k(x) = Hk(x)− φk/K for all k so that
H ′k(x) > 0 if and only if Hk(x) > φk/K. Using thresholds θk = θ∗ with H ′

is equivalent to using θk = θ∗ + φk/K with H; φ controls the tradeoff between
recall and speed. Results for θ∗ = −1 and various φ are shown in Figure 4 (right).
Constant rejection thresholds (with recalibration) will serve as a simple baseline.
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Fig. 5. Left: Cost of evaluating H(x) (with θ∗ = −1) on all x and also separately
on quasi-positives (H(x) ≥ 0) and quasi-negatives (H(x) < 0). For small k the cost of
quasi-negatives dominates; for large k the cost of quasi-positives increases. Right: Cost
of evaluating H(x) on all x with zN = 1. Evaluating only the x with locally maximum
H(x) > 0 in fairly small neighborhoods N results in greatly reduced computation.

3.2 Optimal Soft Cascades

Given a trained classifier H(x), how fast would a hypothetical optimal soft cas-
cade be that rejected all H(x) < 0 without any computation? Answering this
will provide us with intuition and an upper bound on soft cascade effectiveness.

We gather a set of detection windows X by densely sampling windows from
387 images from PASCAL VOC 2007 [24] that contain at least one person. This
gives us a validation set with similar statistics to INRIA [22]. Using a step size
of 4 pixels and 8 scales per octaves there are ∼15 million windows xi ∈ X . We
assign a label zi ∈ {±1} to each detection window xi using our trained detector
H according to the sign of H(xi): zi = 1 if and only if H(xi) ≥ 0. We refer to
xi as quasi-positive if zi = 1 and quasi-negative otherwise (while zi is correlated
with the ground truth label no supervision is needed to obtain zi).

Over 99.5% of the 15 million xi ∈ X are quasi-negatives. While we may thus
expect quasi-negatives to dominate computation, in practice evaluating the small
fraction of quasi-positives incurs roughly the same cost. If we compute H(xi)
using rejection thresholds θ∗ = −1, evaluating H(xi) for zi = 1 typically requires
evaluating all 4096 weak classifiers but on average only ∼18 weak classifiers if
zi = −1. Figure 5 (left) shows the total number of weak classifiers that need to
be evaluated in order to compute Hk(xi) over all xi, xi with zi = 1, and xi with
zi = −1. Results are averaged over eight trials (see §2).

Observe that even if there existed a cascade that could reject all xi with
zi = −1 without any computation it would only be ∼2× faster than the soft
cascade with θ∗ = −1 on this data. Thus, while tuning θk can increase speed
(see §4.1), we need an alternate approach to achieve greater gains.

If instead of computing each H(xi) in isolation we consider neighboring
xi jointly, much greater gains are possible. We extend the definition of quasi-
positives to include a neighborhood N : zNi = 1 if H(xi) ≥ 0 and H(xi) ≥ H(x′i)
∀x′i ∈ N (xi). In other words zNi = 1 if xi has a locally maximum scoreH(xi) > 0.
Abusing notation we write N = [w × h × d] to denote neighborhoods of width
w, height h, and depth d (number of scales) with ∼whd neighbors (our detector
uses a step size of 4 pixels so N = [w× h× d] covers a volume of 16whd pixels).
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In Figure 5 (right) we show the cost of evaluating Hk(x) for all xi with zNi = 1
for different neighborhoods sizes. Computing H(xi) only for xi with zNi = 1 for
a moderately sized neighborhood N = [7× 7× 3] would result in ∼50× savings.
Since typically non-maximum suppression (NMS) is applied to the output of H,
returning only xi that have locally maximum H(xi) should have little effect on
accuracy (especially for small N ). We verify this empirically in §5.

A hypothetical soft cascade that could reject all xi with zNi = −1 with no
computation would improve detection speed by a factor of 10-60× for modest
neighborhood sizes N . This gain is an order of magnitude larger than possible
for optimal soft cascades that consider each xi in isolation and motivates our
approach of allowing neighboring detectors to communicate during classification.

4 Crosstalk Cascades

In this section we introduce algorithms for constructing four types of cascades:

• Soft Cascades: Introduced in §3, a soft cascade rejects a sample x if its
score Hk(x) falls below a per-stage rejection threshold θRk ≥ θ∗.
• Excitatory Cascades: Starting with evaluations over a sparse set of sam-

ples x, if for any k the score Hk(x) rises above a per-stage excitation thresh-
old θEk ≥ θ∗ evaluation begins on all x′ ∈ N (x).

• Inhibitory Cascades: If the ratio Hk(x)/Hk(x′) falls below a per-stage
inhibition threshold θIk < 1 for some x′ ∈ N (x) then x is inhibited (rejected).

• Crosstalk Cascades: Combines soft, excitatory and inhibitory cascades in
a straightforward manner with the goal of computing H(xi) if and only if
zNi = 1 and rejecting all other xi with minimal additional computation.

We present an unsupervised, data-driven framework for learning the per-
stage thresholds for each cascade type that has a single free parameter γ
controlling tradeoff between speed and accuracy. No data annotation is necessary
and only a single parameter γ needs to be selected to tune the cascades.

To keep overhead low we test thresholds only at stages 1 ≤ k < K where
k is a power of 2 (with K = 4096 weak classifiers there are 12 such stages). In
all experiments we use windows xi ∈ X sampled from the PASCAL images as
described in §3.2. For learning we only require xi for which zNi = 1 (i.e. the
quasi-positives) that survive a constant rejection cascade with θ∗ = −1. Based
on experiments in §2.1 and §3.2, we use a neighborhood size of N = 7× 7× 3.

We next describe each cascade type in detail and show how to learn respective
thresholds given γ and a set of quasi-positives. For each cascade type we show
two plots (Figures 6-9). Left: We plot the breakdown of computational effort
versus k using the plot type introduced in §3.2 with overall speedup relative to
constant soft cascades given in legend brackets. Right: We define the quasi miss
rate (QMR) as the fraction of quasi-positives with Hk(x) > θ∗ rejected by a
cascade. We plot QMR for all x with H(x) > H0 as a function of H0 and in
legend brackets list QMR averaged over 0 ≤ H0 ≤ 200. The QMR is computed
in a fully unsupervised manner and serves as a useful estimate of the true MR.
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Fig. 6. Soft cascades with per-stage rejection thresholds for various γ. See text.

4.1 Soft Cascades

Details for how soft cascades are applied at runtime were given in §3. We now
describe our unsupervised approach for setting the rejection thresholds θRk given
the boosted classifier H, quasi-positives xi, and target QMR γ. In practice we
only test at rejection stages kj = 2j−1 for 1 ≤ j ≤ 12 to keep overhead low, but
for notational simplicity we assume testing occurs for every k ≤ K.

Let γ′ = 1−(1−γ)1/K . If at each rejection stage the QMR is ≤ γ′ the overall
QMR of the soft cascade will be ≤ γ. Let X1 denote the set of quasi-positives
and let H1 = {H1(xi)|xi ∈ X1}. We set the first rejection threshold θR1 via

θR1 = [H1]r − ε where r = bγ′ · |H1|c. (2)

Here [H]r denotes the rth order statistic of H (i.e. the rth smallest value in
H) and ε = 10−5. For each remaining stage 1 < k ≤ K we let Xk = {xi ∈
Xk−1|Hk−1(xi) > θRk−1} and Hk = {Hk(xi)|xi ∈ Xk} and compute:

θRk = [Hk]r − ε where r = bγ′ · |Hk|c. (3)

Claim: the soft cascade with θRk as defined above has QMR of at most γ. Proof:
by construction |Xk| ≥ |Xk−1| · (1− γ′); therefore |XK+1| ≥ |X1| · (1− γ′)K . The
fraction of rejected quasi-positives is therefore at most 1− (1− γ′)K = γ. �

We can further optimize θRk by performing a second pass with a target QMR
γ = 0 and XK+1 as the initial set of quasi-positives, but doing so has little
effect in practice. Results for various choices of γ are shown in Figure 6. A value
of γ = .60 results in a 1.8× speedup over using a constant soft cascade, more
aggressive settings yield up to a 3.5× speedup but with larger QMR. Note that
error decreases for xi with larger scores H(xi), meaning high scoring detections
are less likely to be rejected.

How does our approach for computing θRk compare with existing methods?
Zhang and Viola [9] improved upon the original fully supervised method of Bour-
dev and Brandt [8] by proposing a simple semi-supervised approach: their key
observation was that if a single sample survives in the neighborhood of a true
positive no loss is incurred. Our approach is a natural generalization to the un-
supervised case, and indeed, the above mechanism shares similarities with [9];
the primary advantage being that no additional labeled data is needed.
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Fig. 7. Excitatory cascades effectively reduce computation for small k. See text.

4.2 Excitatory Cascades

The goal of excitatory cascades is to generate a set of candidates Xc that contains
every quasi-positive. Let Xg denote all x sampled in a grid with a step size half
the size of N . For N = 7 × 7 × 3, the step size is (3, 3, 1), meaning that one in
nine x is in Xg. Initially Xc = ∅. Now, for each x ∈ Xg, computation of H(x)
continues until: (1) Hk(x) < θ∗, (2) the maximum excitation stage k > k∗ is
reached, or (3) Hk(x) > θEk in which case x and all x′ ∈ N (x) are added to Xc.

We now describe the unsupervised approach for learning θEk and maximum
excitation stage k∗ given H, xi, and target QMR γ. We describe only the 2D case
(single scale) and begin with learning θEk for a single excitation stage k∗ = k. Let
X o

g denote a sampling grid offset by o relative to xi. Given a step size (sx, sy),
there are sxsy possible offsets o for X o

g (including one case where xi ∈ X o
g ). We

treat every sampling grid X o
g as a separate, equally likely possibility. Let hoi be

the maximum score Hk(x′i) of all the x′i ∈ N (xi) ∩ X o
g . Because the step size is

half the size of N , at least n ≥ 4 neighbors of xi will be in X o
g regardless of the

offset o, however, the number of neighbors of xi that survive the soft cascade
may be fewer. If all the x′i ∈ N (xi) ∩ X o

g were rejected by the soft cascade set
hoi = −∞, otherwise set hoi = max(Hk(x′i)). Next, compute:

θEk = [Hk]r − ε where r = bγ · |Hk|c and Hk = {hoi }. (4)

If θEk 6= −∞, then by construction on average 1− γ quasi-positives will end up
in Xc. Unfortunately θEk = −∞ implies no such threshold exists.

The above procedure fails if the excitation stage is too late. Recall from
§2.1 that a detector’s region of support (ROS) decreases with increasing k while
its discriminative power increases. This causes a tension between performing
excitation early, when discriminability is low, and performing excitation late
when the ROS is small. We can find the last valid excitation stage by starting
with k = K and working backwards until θEk is valid. Finally, θEk for earlier
stages are set to the smallest value such that |Xc| does not increase.

To measure error, we compute the full soft cascade (with θ∗ = −1) for all x ∈
Xc. Results are shown in Figure 7. While overall speedup is modest, computation
at early stages k is greatly reduced (a 9× speedup is possible with the given step
size). The excitatory cascade effectively deals with quasi-negatives (see Figure 4);
to reduce computation for larger k we turn to inhibitory cascades next.
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Fig. 8. Inhibitory cascades effectively reduce computation for large k. See text.

4.3 Inhibitory Cascades

Inhibitory cascades operate on the set of all candidates x ∈ X1 in an image.
At each stage k we construct the set Xk+1 by including x ∈ Xk in Xk+1 only
if Hk(x) > θ∗ and x is not inhibited by any of its neighbors that are still in
Xk. Specifically, x ∈ Xk is inhibited (not added to Xk+1) if for any x′ ∈ N (x) ∩
Xk with Hk(x′) > θ∗ the ratio Hk(x)/Hk(x′) < θIk. Observe that previously
inhibited x′ (i.e. x′ /∈ Xk) cannot inhibit x (although x′ inhibited in the current
stage can). To protect against Hk(x) ≤ 0 we add the constant ε − θ∗ to both
Hk(x) and Hk(x′) prior to computing Hk(x)/Hk(x′). After the last stage k = K,
the set XK+1 contains all x that survive the inhibitory cascade.

We now describe the approach for learning θIk given H, xi, and target QMR
γ. The procedure bears resemblance to learning soft cascade rejection thresholds
(see §4.1). We begin by defining Rk(x) = minx′∈N (x){Hk(x)/Hk(x′)}. Let γ′ =

1 − (1 − γ)1/K , X ′k denote the set of surviving quasi-positives in stage k, and
Hk = {Rk(xi)|xi ∈ X ′k}. We set θIk via:

θIk = min
{

1, [Hk]r/(1 + ε)
}

where r = bγ′ · |Hk|c. (5)

X ′1 contains all quasi-positives and we set X ′k = {xi ∈ X ′k−1|Rk−1(xi) > θIk−1}.
Claim: the inhibitory cascade with θIk as defined above has QMR of at most

γ. Proof: it is not hard to see that X ′k ⊆ Xk if we run the inhibitory cascade
with thresholds θIk. However, by construction |X ′k| ≥ |X ′k−1| · (1− γ′). Following
the proof in §4.1, this implies the QMR is at most γ. �

Results for various choices of γ are shown in Figure 8. A value of γ = .60
results in a 2.9× speedup over using a constant soft cascade; larger γ yield bigger
speedups but the QMR starts to rise considerably even at higher scores. Nearly
all computational savings for inhibitory cascades occur at later stages k.

4.4 Crosstalk Cascades

We now describe the details of how to combine soft, excitatory and inhibitory
cascades into crosstalk cascades. Excitatory cascades reduce computation for
small k, inhibitory cascades reduce computation for large k, and soft cascades
reduce computation across all k. Their combination proves very effective.

Incorporating per-stage rejection thresholds θRk into both excitatory and in-
hibitory cascades is simple. Both cascade types use θ∗ as a rejection criteria,
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Fig. 9. Crosstalk cascades effectively reduce computation for all k by combining
soft, excitatory and inhibitory cascades and can achieve dramatic speedups. See text.

replacing θ∗ with θRk in the algorithm definitions is valid and achieves a reduc-
tion in computation (but also an increase in error). Combining excitatory and
inhibitory cascades is straightforward as well. Excitatory cascades generate a
sparse set of candidates Xc while inhibitory cascades operate on an initial can-
didate set X1. We can therefore use the output of excitatory cascades as input
to the inhibitory cascades and set X1 = Xc. Additionally, evaluations of H(x)
used to compute Xc can be cached and re-used in the inhibitory stage.

To adjust the crosstalk cascade we use a single γ for setting the rejection,
excitation, and inhibition thresholds separately. We leave joint optimization of
the thresholds for future work.

Results for various choices of γ are shown in Figure 9. Crosstalk cascades
achieve dramatic speedups, e.g. for γ = .8 computation time is reduced by ∼20×
fold (compared to about 2.5×, 2×, and 4× for the individual cascade types).
The speedups for crosstalk cascades are close to the product of the individual
speedups, especially for lower γ. The QMR is higher, but not drastically so. We
examine the true detection accuracy of crosstalk cascades next.

5 Evaluation

We begin by evaluating strategies for setting per-stage rejection thresholds θRk for
soft cascades, including our unsupervised approach. We compare three strategies.
(1) First, we simply recalibrate our trained detector as described in §3.1 by setting
θRk = θ∗ + φk/K for various φ; this strategy has no data-driven component. (2)
Next we utilize a semi-supervised approach inspired by the work of Zhang and
Viola [9]. For each positive training example xi, we select the x′i ∈ N (xi) with
maximum scoring response H(x′i), giving us a new set of examples Xsemi; to
set θRk we simply utilize the algorithm in §4.1 but with Xsemi in place of the
quasi-positives. While not identical to [9], this approach is similar in spirit. (3)
Finally we utilize our unsupervised approach described in §4.1, varying γ.

Results for soft cascades on INRIA [22] are shown in Figure 10 (left). For
each strategy we sweep over γ (or φ) and plot the resulting log-average miss rate
(MR) versus speedup relative to soft cascades with θRk = θ∗. Legend brackets list
MR at 4× speedup. All approaches achieve a relative speedup of around 2× with
no loss in accuracy, but for higher speedups the proposed unsupervised approach
to soft cascades has significantly lower error due to its data-driven nature and
availability of a large amount of unsupervised data.
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Fig. 10. Left: Effectiveness of strategies for setting per-stage rejection thresholds for
soft cascades. For each strategy we sweep over γ (or φ) and plot the resulting MR
versus relative speedup (legend brackets list MR at 4× speedup). Our unsupervised
approach to learning soft cascades outperforms other baselines. Right: MR versus rel-
ative speedup for soft, excitatory, inhibitory, and crosstalk cascades as γ varies (legend
lists MR at 8× speedup). In isolation, excitatory and inhibitory cascades provide little
benefit, but when coupled the resulting crosstalk cascade achieves dramatic speedups.

Fig. 11. Left: Crosstalk cascades evaluated on INRIA for multiple settings of γ (MR
and speedup given in brackets). Crosstalk cascades achieve a speedup of 4× with no loss
in performance, 8× speedup for a loss under .5% MR, and speedups between 16− 32×
if larger errors (2-4%) are acceptable. Right: For each soft cascade of approximately
equal accuracy (matched by color), the corresponding crosstalk cascade is much faster.

Results on INRIA for crosstalk cascades are shown in Figure 10 (right).
Crosstalk cascade achieve large gains, giving a speedup of 4× over the baseline
with no loss in accuracy, 8× speedup for a loss under .5% MR, and speedups
between 16− 32× for somewhat larger errors of 2-4%. Figure 11 shows ROC
curves for crosstalk cascades with γ’s set to achieve 4-32× speedups and corre-
sponding soft cascades with γ’s set to match the error of the crosstalk cascades.
The relative speedup of the matching crosstalk cascades is 2-5 times higher.

Using a larger spatial step size can provide additional speedups for soft cas-
cades. We evaluate soft cascades with step sizes that range from 4-12 pixels (the
default is 4 pixels). As before, for each variant we sweep over γ and plot MR
versus relative speedup, see Figure 12. Crosstalk cascades, using the default 4
pixel step size, outperform soft cascade regardless of their spatial step size.

Crosstalk cascades operate at 45 fps while matching state-of-the-art detec-
tion accuracy and 55-65 fps at slightly higher MR. Complete results on INRIA
along with a comparison to the state of the art are shown in Figure 13. Crosstalk
cascades are over 5 times faster than any previously published results. Results on
additional pedestrian datasets are shown in Figure 14; on all datasets crosstalk
cascade match or outperform the state-of-the-art while running much faster.
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Fig. 12. No setting of the spatial step size and γ for soft cascades can simultaneously
match the speed and accuracy of crosstalk cascades (legend lists MR at 16× speedup).

Fig. 13. Log-average miss rate (MR) versus speed (measured in fps) for various de-
tectors on INRIA. Method runtimes were obtained from [6], see also [6] for detector
citations. Legend brackets show MR/speedup for select methods. Crosstalk cascades
for all setting of γ are much faster than any competing approach. At γ = .6 crosstalk
cascades have state of the art accuracy while operating at 45 fps.

.

Fig. 14. From left to right: results on the Caltech, ETH, and TUD-Brussels pedes-
trian datasets (see [6]). Shown competing approaches are ChnFtrs [20], FPDW [4] and
LatSvm [23]. On all datasets, crosstalk cascades (with γ = .6) match or outperform the
state-of-the-art (except at high false positives) while running at much higher speeds.
Complete results along with comparisons to numerous additional algorithms are avail-
able at www.vision.caltech.edu/Image Datasets/CaltechPedestrians.

6 Discussion

In this paper we: (1) analyzed cascades and experimentally demonstrated lower
and upper bounds on their performance, (2) proposed a novel approach to more
effectively learn soft cascade rejection thresholds using an unsupervised ap-
proach, and (3) introduced crosstalk cascade that enable neighboring detectors
to communicate and thereby achieve major computational gains. Our approach
is simple and effective and achieves faster than frame-rate detection.
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