<UCSD | Computer Science

Jacobs | and Engineering

Introduction

4 N

LINEAR

~— —
®
o)
L
\ -----------
P RLES
o 5 o . .0.
-u.‘l L
()

® Projection

2: Testing

O Training

NON-LINEAR

Typical operations on a linear subspace (PCA):
* Project onto subspace

* Distance between point and subspace

* Distance between projected points

* Predict structure of space where no data given

Extend above to nonlinear manifolds (LSML):
* Need new manifold representation

* Deal with non-isometric manifolds

* Generalize to unseen portions of manifold
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Goal of LSML
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Problem Formulation

* d-dimensional manifold(s) in D-dimensional space
* Learn a mapping from a point to its tangent basis
* LSML = locally smooth manifold learning
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* Could then test regression in
other places on manifold:

Benefits

* Representation learned by LSML (tangent space)
appropriate for non-isometric manifolds

- Learns a mapping over R”
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R j manifolds: manifold transfer
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e Can be applied beyond support
of original data (generalization).
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Non-lsometric Manifold Learning

Analysis and an Algorithm

Piotr Dollar

Computer Science and Engineering

University of California, San Diego
pdollar@cs.ucsd.edu

Error Function

a N

X' D x 1] i € |n], data point

X' Dx1] XU =xx

fJ f x 1] features of x*

N indices of neighbors of x*
7‘[9 H@ : RD — RDXd

HY 1D x d] HY = Hqo(x¥) (for 6 fixed)
€' ld x 1] alignment free parameter

v 3\~
NN
NRERI

|Ho (X7 )€ — AL,

‘ 2
2

1, JEN?
Add regularization terms:

;i 9 i B _?:.,
Ap 3 eVl + o 37 |[Ho(e) — Ho ()|

2

\ /

Optimization Procedure
.
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Linear form: ”He(fij) = [@1fij ' "@Dfij]T
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Initialize © randomly.
while err(©) decreases do
Vi, j, solve for the best €7 given the ©Fs:

€/ = (H H9 + \I)THY A’

VEk, solve for the best ©F given the €Y’s:

Let: A= |ei' @fii' | ,bF=|AL

vec (@kT) = (ATA+ X e(I® (Ap'Ap)) AT

end while
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Analyzing Manifold Learning Methods
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Need evaluation methodology:
* To objectively compare methods
* To extend to non-isometric manifolds

By definition, for isometric manifolds embedding
should preserve distance
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Requires two sets of samples from manifold:
1. Sp —for training

2. Soo— for computing “true” geodesics (Isomap)

Results:
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* Finite Sample performance:
LSML > ISOMAP > MVU > LLE
* Model Complexity
— All methods have at least one parameter: k
— Bias-Variance tradeoff

* Similar for non-isometric (LSML / Isomap onl
\ ( p only) Y,

LSML Test Error
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Typically, Soc not available
* Need notion of generalization: testable prediction
* Model assessment / Model selection
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* Use much as test error in supervised learning
* Cannot be used to select d
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Using the Tangent Space
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Projection ,
A projection x' of x must satisfy: min ||x — x’||;

Perform gradient descent after initializing x' to a
close point on manifold: ' . /' + H' H'T (x — %)

Manifold De-noising |
A X' i1s noisy and its clean version X
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. needs to be close and to satisfy
local linearity assumption:
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Apply gradient descent to minimize overall error:
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Geodesic Distance

Is the length of an optimal path Xi
between two points, with local
tangents on the manifold.
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Alternative optimization of above
+ errp(x) by projected gradient

descent:
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Other Example Uses
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structured and
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Generalization beyond
support of training data
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sparsely sampled regions

\_ * Can also measure error for manifold transfer




