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Motivation

. Extend manifold learning to
applications other than embedding

. Establish notion of test error and
generalization for manifold learning




Linear Manifolds (subspaces)

LINEAR

0 Training s Testing @ Projection

Typical operations:

® project onto subspace

® distance to subspace

® distance between points

® generalize to unseen regions




Non-Linear Manifolds

NON-LINEAR

0 Training s Testing @ Projection

Desired operations:
project onto manifold
distance to manifold
geodesic distance
generalize to unseen regions




Il. Locally Smooth Manifold Learning (LSML)

Represent manifold by its tangent space

Non-local Manifold Tangent Learning [Bengio et al. NIPS05]
Learning to Traverse Image Manifolds [Dollar et al. NIPS06]




Learning the tangent space

Data on d dim. manifold in D dim. space
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Learning the tangent space

Learn function from point to tangent basis
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Loss function
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Optimization procedure

Linear form: Ha(X7) = L@lfi:f . @Ufijj T

T - PR
err(f) = min E E (f” eF ")

JLE”} JE\. 1
[nitialize © randomly.
while err(©) decreases do
Wi, j, solve for the best €7 given the ©Fs:

¢l = (H" HT =\ HT A

k. solve for the best ©F given the €%’s;
t: A= |ed @fidl | b= Aj,

vec (@”) —(ATA+ o (I & (Ap Ap)) 14T

end while




lll. Analyzing Manifold Learning Methods

® Need evaluation methodology to:
objectively compare methods
control model complexity
extend to non-isometric manifolds




Evaluation metric

By definition, for isometric manifolds embedding
should preserve distance

Estimated dist
dij < True distance

ij
Requires two sets of samples from manifold:

1. Sy —for training
2. Soo— for computing “true” geodesics (Isomap)

Applicable for manifolds that can be densely sampled




Finite Sample Performance
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Performance: LSML > ISOMAP > MVU >> LLE
Applicability: LSML >> LLE> MVU > ISOMAP




Model Complexity

S—curve [n=400]

All methods have at least one parameter: k
Bias-Variance tradeoff




LSML test error

Typically, S not available
* Need notion of generalization: testable prediction
* Model assessment / Model selection
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LSML test error

Typically, Sso not available
* Need notion of generalization: testable prediction
* Model assessment / Model selection
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* Use much as test error in supervised learning
* Cannot be used to select d
* Can also measure error for manifold transfer




V. Using the Tangent Space

® projection

® manifold de-noising
® geodesic distance
® generalization




Projection

x' is the projection of x onto a manifold if it satisfies:

. 2
min [|x — x|

gradient descent is performed after initializing the
projection x' to some point on the manifold:

x' —x' +aH'H" (x—x)

/
X H' < tangents at x’

>
/ \~X\_ H' H' - projection matrix




Manifold de-noising

Goal: recover points on manifold (X') from points
corrupted by noise (X)
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® X - original
® X - de-noised




Geodesic distance

Shortest path:

On manifold:

| gradient descent

>




Geodesic distance

< embedding of
sparse and
structured data—>

<can apply to
non-isometric
manifolds =




Generalization

< Reconstruction
within the support of
training data

< Generalization
beyond support of
training data -




Thank you!




