Non-Isometric Manifold Learning Analysis and an Algorithm

Piotr Dollár, Vincent Rabaud, Serge Belongie

University of California, San Diego

I. Motivation

- Extend manifold learning to applications other than embedding
- 2. Establish notion of test error and generalization for manifold learning

Linear Manifolds (subspaces)

Typical operations:

- project onto subspace
- distance to subspace
- distance between points
- generalize to unseen regions

Non-Linear Manifolds

Desired operations:

- project onto manifold
- distance to manifold
- geodesic distance
- generalize to unseen regions

II. Locally Smooth Manifold Learning (LSML)

Represent manifold by its tangent space

Non-local Manifold Tangent Learning [Bengio et al. NIPS05] Learning to Traverse Image Manifolds [Dollar et al. NIPS06]

Learning the tangent space

Data on d dim. manifold in D dim. space

$$y \in \mathbb{R}^d \quad x \in \mathbb{R}^D$$

$$x = \mathcal{M}(y)$$

$$\mathcal{M}: \left\{ egin{array}{cccc} \mathbb{R}^d & \longrightarrow & \mathbb{R}^D \ \mathbf{y} & \longmapsto & \mathbf{x} \end{array}
ight.$$

Learning the tangent space

Learn function from point to tangent basis

$$y \in \mathbb{R}^d \quad x \in \mathbb{R}^D$$

$$x = \mathcal{M}(y)$$

$$\mathcal{H}(x)$$

$$\mathcal{H}: \left\{ \begin{array}{ccc} \mathbb{R}^D & \longrightarrow & \mathbb{R}^{D\times d} \\ \mathbf{x} & \longmapsto & \left[\frac{\partial}{\partial \mathbf{y}_1} \mathcal{M}(\mathbf{y}) & \cdots & \frac{\partial}{\partial \mathbf{y}_d} \mathcal{M}(\mathbf{y}) \right] \end{array} \right.$$

Loss function

Aligned

Unaligned

$$\operatorname{err}(\theta) = \min_{\{\boldsymbol{\epsilon}^{ij}\}} \sum_{i,j \in \mathcal{N}^i} \left\| \mathcal{H}_{\theta}(\overline{\mathbf{x}}^{ij}) \boldsymbol{\epsilon}^{ij} - \Delta_{\cdot j}^i \right\|_2^2$$

Optimization procedure

Linear form:
$$\mathcal{H}_{\theta}(\overline{\mathbf{x}}^{ij}) = \left[\Theta^{1}\mathbf{f}^{ij}\cdots\Theta^{D}\mathbf{f}^{ij}\right]^{\top}$$

$$\operatorname{err}(\theta) = \min_{\left\{\boldsymbol{\epsilon}^{ij}\right\}} \sum_{i \in \mathcal{N}^{i}} \sum_{k=1}^{D} \left(\mathbf{f}^{ij^{\top}}\Theta^{k^{\top}}\boldsymbol{\epsilon}^{ij} - \Delta_{kj}^{i}\right)^{2}$$

Initialize Θ randomly.

while $err(\Theta)$ decreases do

 $\forall i, j$, solve for the best ϵ^{ij} given the Θ^k s:

$$\boldsymbol{\epsilon}^{ij} = (\boldsymbol{H^{ij}}^{\top}\boldsymbol{H^{ij}} + \lambda_{\epsilon}\boldsymbol{I})^{+}\boldsymbol{H^{ij}}^{\top}\boldsymbol{\Delta}_{\cdot j}^{i}$$

 $\forall k$, solve for the best Θ^k given the ϵ^{ij} 's:

Let:
$$A = \begin{bmatrix} \vdots \\ \boldsymbol{\epsilon}^{ij^{\top}} \otimes \mathbf{f}^{ij^{\top}} \end{bmatrix}, \mathbf{b}^{k} = \begin{bmatrix} \vdots \\ \Delta_{kj}^{i} \\ \vdots \end{bmatrix}$$

$$\operatorname{vec}\left(\Theta^{k^{\top}}\right) = (A^{\top}A + \lambda_{\Theta}(I \otimes (\Delta_{F}^{\top}\Delta_{F}))^{-1}A^{\top}\mathbf{b}^{k}$$

end while

III. Analyzing Manifold Learning Methods

- Need evaluation methodology to:
 - objectively compare methods
 - control model complexity
 - extend to non-isometric manifolds

Evaluation metric

By definition, for isometric manifolds embedding should preserve distance

$${
m err}_{
m GD} \equiv rac{1}{n^2} \sum_{ij} rac{|d_{ij} - d'_{ij}|}{d_{ij}} {
m \leftarrow ----} {
m Estimated \ dist}$$
 True distance

Requires two sets of samples from manifold:

- 1. S_n for training
- 2. S_{∞} for computing "true" geodesics (Isomap)

Applicable for manifolds that can be densely sampled

Finite Sample Performance

Performance: LSML > ISOMAP > MVU >> LLE

Applicability: LSML >> LLE > MVU > ISOMAP

Model Complexity

All methods have at least one parameter: k Bias-Variance tradeoff

LSML test error

Typically, S_{∞} not available

- Need notion of generalization: testable prediction
- Model assessment / Model selection

Define:
$$\operatorname{err}_{\text{LSML}} \equiv \sum_{i} \min_{\boldsymbol{\epsilon}^{ii'}} \left\| \mathcal{H}_{\theta}(\overline{\mathbf{x}}^{ii'}) \boldsymbol{\epsilon}^{ii'} - (\mathbf{x}^{i} - \mathbf{x}^{i'}) \right\|_{2}^{2}$$

Claim: $err_{\rm LSML}$ / $err_{\rm GD}$ strongly correlated:

LSML test error

Typically, S_{∞} not available

- Need notion of generalization: testable prediction
- Model assessment / Model selection

Define:
$$\operatorname{err}_{\text{LSML}} \equiv \sum_{i} \min_{\boldsymbol{\epsilon}^{ii'}} \left\| \mathcal{H}_{\theta}(\overline{\mathbf{x}}^{ii'}) \boldsymbol{\epsilon}^{ii'} - (\mathbf{x}^{i} - \mathbf{x}^{i'}) \right\|_{2}^{2}$$

- Use much as test error in supervised learning
- Cannot be used to select d
- Can also measure error for manifold transfer

IV. Using the Tangent Space

- projection
- manifold de-noising
- geodesic distance
- generalization

Projection

x' is the projection of x onto a manifold if it satisfies:

$$\min_{\mathbf{x}'} \left\| \mathbf{x} - \mathbf{x}' \right\|_2^2$$

gradient descent is performed after initializing the projection x' to some point on the manifold:

$$\mathbf{x}' \leftarrow \mathbf{x}' + \alpha H' H'^{\top} (\mathbf{x} - \mathbf{x}')$$

$$H' \longleftarrow$$
 tangents at \mathbf{x}'
 $H' H'^{\top} \longleftarrow$ projection matrix

Manifold de-noising

Goal: recover points on manifold (χ) from points corrupted by noise (\mathbf{X})

$$\operatorname{err}_{\mathcal{M}}(\chi) = \min_{\{\boldsymbol{\epsilon}^{ij}\}} \sum_{i,j \in \mathcal{N}^i} \|\mathcal{H}_{\theta}(\overline{\chi}^{ij})\boldsymbol{\epsilon}^{ij} - (\chi^i - \chi^j)\|_2^2$$
$$\operatorname{err}_{\operatorname{orig}}(\chi) = \sum_{i=1}^i \|\chi^i - \mathbf{x}^i\|_2^2$$

- ●X original
- ullet χ de-noised

Geodesic distance

Shortest path:

$$\operatorname{err}_{\operatorname{length}}(\chi) = \sum_{i=2}^{m} \|\chi^{i} - \chi^{i-1}\|_{2}^{2}$$

On manifold:

$$\operatorname{err}_{\mathcal{M}}(\chi) = \min_{\{\boldsymbol{\epsilon}^{ij}\}} \sum_{i,j \in \mathcal{N}^i} \|\mathcal{H}_{\theta}(\overline{\chi}^{ij})\boldsymbol{\epsilon}^{ij} - (\chi^i - \chi^j)\|_2^2$$

gradient descent

Geodesic distance

Generalization

← Reconstruction within the support of training data

← Generalization beyond support of training data

Thank you!