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I.   Motivation

1.  Extend manifold learning to 
applications other than embedding

2.  Establish notion of test error and 
generalization for manifold learning



Linear Manifolds (subspaces)

Typical operations:
 project onto subspace
 distance to subspace
 distance between points
 generalize to unseen regions



Non-Linear Manifolds

Desired operations:
 project onto manifold
 distance to manifold
 geodesic distance
 generalize to unseen regions



II.  Locally Smooth Manifold Learning (LSML)

Represent manifold by its tangent space

Non-local Manifold Tangent Learning [Bengio et al. NIPS05]

Learning to Traverse Image Manifolds [Dollar et al. NIPS06]



Learning the tangent space

Data on d dim. manifold in D dim. space



Learning the tangent space

Learn function from point to tangent basis



Loss function



Optimization procedure



Need evaluation methodology to:
objectively compare methods
control model complexity
extend to non-isometric manifolds

III.  Analyzing Manifold Learning Methods



Evaluation metric

Applicable for manifolds that can be densely sampled



Finite Sample Performance

Performance:   LSML  >  ISOMAP  >  MVU  >>  LLE

Applicability:    LSML  >>  LLE >  MVU  >  ISOMAP



Model Complexity

All methods have at least one parameter: k

Bias-Variance tradeoff



LSML test error



LSML test error



IV.  Using the Tangent Space

projection
manifold de-noising
geodesic distance
generalization



Projection

x' is the projection of x onto a manifold if it satisfies:

gradient descent is performed after initializing the 
projection x' to some point on the manifold:

tangents at 

projection matrix



Manifold de-noising

- original

- de-noised

Goal: recover points on manifold (   ) from points 
corrupted by noise (   )



Geodesic distance

Shortest path:

gradient descent

On manifold:



 embedding of 
sparse and 
structured data

can apply to 
non-isometric 
manifolds 

Geodesic distance



Generalization

Generalization 
beyond support of 
training data 

Reconstruction 
within the support of 
training data



Thank you!


