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Fast Feature Pyramids for Object Detection
Piotr Dollár, Ron Appel, Serge Belongie, and Pietro Perona

Abstract—Multi-resolution image features may be approximated via extrapolation from nearby scales, rather than being computed
explicitly. This fundamental insight allows us to design object detection algorithms that are as accurate, and considerably faster, than
the state-of-the-art. The computational bottleneck of many modern detectors is the computation of features at every scale of a finely-
sampled image pyramid. Our key insight is that one may compute finely sampled feature pyramids at a fraction of the cost, without
sacrificing performance: for a broad family of features we find that features computed at octave-spaced scale intervals are sufficient to
approximate features on a finely-sampled pyramid. Extrapolation is inexpensive as compared to direct feature computation. As a result,
our approximation yields considerable speedups with negligible loss in detection accuracy. We modify three diverse visual recognition
systems to use fast feature pyramids and show results on both pedestrian detection (measured on the Caltech, INRIA, TUD-Brussels
and ETH datasets) and general object detection (measured on the PASCAL VOC). The approach is general and is widely applicable
to vision algorithms requiring fine-grained multi-scale analysis. Our approximation is valid for images with broad spectra (most natural
images) and fails for images with narrow band-pass spectra (e.g. periodic textures).

Index Terms—visual features, object detection, image pyramids, pedestrian detection, natural image statistics, real-time systems
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1 INTRODUCTION
Multi-resolution multi-orientation decompositions are
one of the foundational techniques of image analysis.
The idea of analyzing image structure separately at
every scale and orientation originated from a number of
sources: measurements of the physiology of mammalian
visual systems [1], [2], [3], principled reasoning about
the statistics and coding of visual information [4], [5],
[6], [7] (Gabors, DOGs, and jets), harmonic analysis [8],
[9] (wavelets), and signal processing [9], [10] (multirate
filtering). Such representations have proven effective for
visual processing tasks such as denoising [11], image
enhancement [12], texture analysis [13], stereoscopic cor-
respondence [14], motion flow [15], [16], attention [17],
boundary detection [18] and recognition [19], [20], [21].

It has become clear that such representations are best
at extracting visual information when they are over-
complete, i.e. when one oversamples scale, orientation
and other kernel properties. This was suggested by the
architecture of the primate visual system [22], where
striate cortical cells (roughly equivalent to a wavelet ex-
pansion of an image) outnumber retinal ganglion cells (a
representation close to image pixels) by a factor ranging
from 102 to 103. Empirical studies in computer vision
provide increasing evidence in favor of overcomplete
representations [23], [24], [25], [21], [26]. Most likely
the robustness of these representations with respect to
changes in viewpoint, lighting, and image deformations
is a contributing factor to their superior performance.
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To understand the value of richer representations, it is
instructive to examine the reasons behind the breathtak-
ing progress in visual category detection during the past
ten years. Take, for instance, pedestrian detection. Since
the groundbreaking work of Viola and Jones (VJ) [27],
[28], false positive rates have decreased two orders of
magnitude. At 80% detection rate on the INRIA pedes-
trian dataset [21], VJ outputs over 10 false positives per
image (FPPI), HOG [21] outputs ∼1 FPPI, and more
recent methods [29], [30] output well under 0.1 FPPI
(data from [31], [32]). In comparing the different detec-
tion schemes one notices the representations at the front
end are progressively enriched (e.g. more channels, finer
scale sampling, enhanced normalization schemes); this
has helped fuel the dramatic improvements in detection
accuracy witnessed over the course of the last decade.

Unfortunately, improved detection accuracy has been
accompanied by increased computational costs. The VJ
detector ran at∼15 frames per second (fps) over a decade
ago, on the other hand, most recent detectors require
multiple seconds to process a single image as they com-
pute richer image representations [31]. This has practical
importance: in many applications of visual recognition,
such as robotics, human computer interaction, automo-
tive safety, and mobile devices, fast detection rates and
low computational requirements are of the essence.

Thus, while increasing the redundancy of the rep-
resentation offers improved detection and false-alarm
rates, it is paid for by increased computational costs.
Is this a necessary trade-off? In this work we offer the
hoped-for but surprising answer: no.

We demonstrate how to compute richer representa-
tions without paying a large computational price. How
is this possible? The key insight is that natural images
have fractal statistics [7], [33], [34] that we can exploit to
reliably predict image structure across scales. Our anal-
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ysis and experiments show that this makes it possible to
inexpensively estimate features at a dense set of scales
by extrapolating computations carried out expensively,
but infrequently, at a coarsely sampled set of scales.

Our insight leads to considerably decreased run-times
for state-of-the-art object detectors that rely on rich repre-
sentations, including histograms of gradients [21], with
negligible impact on their detection rates. We demon-
strate the effectiveness of our proposed fast feature
pyramids with three distinct detection frameworks in-
cluding integral channel features [29], aggregate channel
features (a novel variant of integral channel features),
and deformable part models [35]. We show results for
both pedestrian detection (measured on the Caltech [31],
INRIA [21], TUD-Brussels [36] and ETH [37] datasets)
and general object detection (measured on the PASCAL
VOC [38]). Demonstrated speedups are significant and
impact on accuracy is relatively minor.

Building on our work on fast feature pyramids (first
presented in [39]), a number of systems show state-of-
the-art accuracy while running at frame rate on 640×480
images. Aggregate channel features, described in this pa-
per, operate at over 30 fps while achieving top results on
pedestrian detection. Crosstalk cascades [40] use fast fea-
ture pyramids and couple detector evaluations of nearby
windows to achieve speeds of 35-65 fps. Benenson et al.
[30] implemented fast feature pyramids on a GPU, and
with additional innovations achieved detection rates of
over 100 fps. In this work we examine and analyze
feature scaling and its effect on object detection in far
more detail than in our previous work [39].

The rest of this paper is organized as follows. We
review related work in §2. In §3 we show that it is
possible to create high fidelity approximations of multi-
scale gradient histograms using gradients computed at
a single scale. In §4 we generalize this finding to a broad
family of feature types. We describe our efficient scheme
for computing finely sampled feature pyramids in §5.
In §6 we show applications of fast feature pyramids to
object detection, resulting in considerable speedups with
minor loss in accuracy. We conclude in §7.

2 RELATED WORK

Significant research has been devoted to scale space
theory [41], including real time implementations of oc-
tave and half-octave image pyramids [42], [43]. Sparse
image pyramids often suffice for certain approximations,
e.g. [42] shows how to recover a disk’s characteristic
scale using half-octave pyramids. Although only loosely
related, these ideas provide the intuition that finely
sampled feature pyramids can perhaps be approximated.

Fast object detection has been of considerable interest
in the community. Notable recent efforts for increasing
detection speed include work by Felzenszwalb et al.
[44] and Pedersoli et al. [45] on cascaded and coarse-
to-fine deformable part models, respectively, Lampert
et al.’s [46] application of branch and bound search for

detection, and Dollár et al.’s work on crosstalk cascades
[40]. Cascades [27], [47], [48], [49], [50], coarse-to-fine
search [51], distance transforms [52], etc., all focus on op-
timizing classification speed given precomputed image
features. Our work focuses on fast feature pyramid con-
struction and is thus complementary to such approaches.

An effective framework for object detection is the
sliding window paradigm [53], [27]. Top performing
methods on pedestrian detection [31] and the PASCAL
VOC [38] are based on sliding windows over multiscale
feature pyramids [21], [29], [35]; fast feature pyramids
are well suited for such sliding window detectors. Al-
ternative detection paradigms have been proposed [54],
[55], [56], [57], [58], [59]. Although a full review is outside
the scope of this work, the approximations we propose
could potentially be applicable to such schemes as well.

As mentioned, a number of state-of-the-art detectors
have recently been introduced that exploit our fast fea-
ture pyramid construction to operate at frame rate in-
cluding [40] and [30]. Alternatively, parallel implementa-
tion using GPUs [60], [61], [62] can achieve fast detection
while using rich representations but at the cost of added
complexity and hardware requirements. Zhu et al. [63]
proposed fast computation of gradient histograms using
integral histograms [64]; the proposed system was real
time for single-scale detection only. In scenarios such
as automotive applications, real time systems have also
been demonstrated [65], [66]. The insights outlined in
this paper allow for real time multiscale detection in
general, unconstrained settings.

3 MULTISCALE GRADIENT HISTOGRAMS

We begin by exploring a simple question: given image
gradients computed at one scale, is it possible to approximate
gradient histograms at a nearby scale solely from the computed
gradients? If so, then we can avoid computing gradients
over a finely sampled image pyramid. Intuitively, one
would expect this to be possible, as significant image
structure is preserved when an image is resampled. We
begin with an in-depth look at a simple form of gradient
histograms and develop a more general theory in §4.

A gradient histogram measures the distribution of the
gradient angles within an image. Let I(x, y) denote an
m × n discrete signal, and ∂I/∂x and ∂I/∂y denote
the discrete derivatives of I (typically 1D centered first
differences are used). Gradient magnitude and orien-
tation are defined by: M(i, j)2 = ∂I

∂x (i, j)2 + ∂I
∂y (i, j)2

and O(i, j) = arctan
(
∂I
∂y (i, j)/ ∂I∂x (i, j)

)
. To compute the

gradient histogram of an image, each pixel casts a
vote, weighted by its gradient magnitude, for the bin
corresponding to its gradient orientation. After the ori-
entation O is quantized into Q bins so that O(i, j) ∈
{1, Q}, the qth bin of the histogram is defined by: hq =∑
i,jM(i, j)1 [O(i, j) = q], where 1 is the indicator func-

tion. In the following everything that holds for global
histograms also applies to local histograms (defined
identically except for the range of the indices i and j).
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(b) downsampling gradients (2x)
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(c) downsampling normalized gradients (2x)
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Fig. 1. Behavior of gradient histograms in images resampled by a factor of two. (a) Upsampling gradients: Given images I and
I ′ where I ′ denotes I upsampled by two, and corresponding gradient magnitude images M and M ′, the ratio ΣM/ΣM ′ should be
approximately 2. The middle/bottom panels show the distribution of this ratio for gradients at fixed orientation over pedestrian/natural
images. In both cases the mean µ ≈ 2, as expected, and the variance is relatively small. (b) Downsampling gradients: Given
images I and I ′ where I ′ denotes I downsampled by two, the ratio ΣM/ΣM ′ ≈ .34, not .5 as might be expected from (a) as
downsampling results in loss of high frequency content. (c) Downsampling normalized gradients: Given normalized gradient
magnitude images M̃ and M̃ ′, the ratio ΣM̃/ΣM̃ ′ ≈ .27. Instead of trying to derive analytical expressions governing the scaling
properties of various feature types under different resampling factors, in §4 we describe a general law governing feature scaling.

3.1 Gradient Histograms in Upsampled Images
Intuitively the information content of an upsampled
image is similar to that of the original, lower-resolution
image (upsampling does not create new structure). As-
sume I is a continuous signal, and let I ′ denote I
upsampled by a factor of k: I ′(x, y) ≡ I(x/k, y/k).
Using the definition of a derivative, one can show that
∂I′

∂x (i, j) = 1
k
∂I
∂x (i/k, j/k), and likewise for ∂I′

∂y , which
simply states the intuitive fact that the rate of change in
the upsampled image is k times slower the rate of change
in the original image. While not exact, the above also
holds approximately for interpolated discrete signals.
Let M ′(i, j) ≈ 1

kM(di/ke, dj/ke) denote the gradient
magnitude in an upsampled discrete image. Then:

kn∑
i=1

km∑
j=1

M ′(i, j) ≈
kn∑
i=1

km∑
j=1

1

k
M(di/ke, dj/ke) (1)

= k2
n∑
i=1

m∑
j=1

1

k
M(i, j) = k

n∑
i=1

m∑
j=1

M(i, j)

Thus, the sum of gradient magnitudes in the original
and upsampled image should be related by about a
factor of k. Angles should also be mostly preserved since
∂I′

∂x (i, j)
/
∂I′

∂y (i, j) ≈ ∂I
∂x (i/k, j/k)

/
∂I
∂y (i/k, j/k). Therefore,

according to the definition of gradient histograms, we
expect the relationship between hq (computed over I)
and h′q (computed over I ′) to be: h′q ≈ khq . This allows
us to approximate gradient histograms in an upsampled
image using gradients computed at the original scale.

Experiments: One may verify experimentally that in
images of natural scenes, upsampled using bilinear in-
terpolation, the approximation h′q ≈ khq is reasonable.
We use two sets of images for these experiments, one
class specific and one class independent. First, we use
the 1237 cropped pedestrian images from the INRIA
pedestrians training dataset [21]. Each image is 128× 64
and contains a pedestrian approximately 96 pixels tall.
The second image set contains 128×64 windows cropped
at random positions from the 1218 images in the INRIA
negative training set. We sample 5000 windows but
exclude nearly uniform windows, i.e. those with average
gradient magnitude under .01, resulting in 4280 images.
We refer to the two sets as ‘pedestrian images’ and
‘natural images’, although the latter is biased toward
scenes that may (but do not) contain pedestrians.

In order to measure the fidelity of this approximation,
we define the ratio rq = h′q/hq and quantize orientation
into Q = 6 bins. Figure 1(a) shows the distribution of
rq for one bin on the 1237 pedestrian and 4280 natural
images given an upsampling of k = 2 (results for other
bins were similar). In both cases the mean is µ ≈ 2, as
expected, and the variance is relatively small, meaning
the approximation is unbiased and reasonable.

Thus, although individual gradients may change, gra-
dient histograms in an upsampled and original image
will be related by a multiplicative constant roughly equal
to the scale change between them. We examine gradient
histograms in downsampled images next.



4 SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Fig. 2. Approximating gradient histograms in images resampled by a factor of two. For each image set, we take the original
image (green border) and generate an upsampled (blue) and downsampled (orange) version. At each scale we compute a gradient
histogram with 8 bins, multiplying each bin by .5 and 1/.34 in the upsampled and downsampled histogram, respectively. Assuming
the approximations from §3 hold, the three normalized gradient histograms should be roughly equal (the blue, green, and orange
bars should have the same height at each orientation). For the first four cases, the approximations are fairly accurate. In the last
two cases, showing highly structured Brodatz textures with significant high frequency content, the downsampling approximation
fails. The first four images are representative, the last two are carefully selected to demonstrate images with atypical statistics.

3.2 Gradient Histograms in Downsampled Images
While the information content of an upsampled image
is roughly the same as that of the original image, infor-
mation is typically lost during downsampling. However,
we find that the information loss is consistent and the re-
sulting approximation takes on a similarly simple form.

If I contains little high frequency energy, then the
approximation h′q ≈ khq derived in §3.1 should apply. In
general, however, downsampling results in loss of high
frequency content which can lead to measured gradients
undershooting the extrapolated gradients. Let I ′ now
denote I downsampled by a factor of k. We expect that
hq (computed over I) and h′q (computed over I ′) will
satisfy h′q ≤ hq/k. The question we seek to answer here
is whether the information loss is consistent.

Experiments: As before, define rq = h′q/hq . In Fig-
ure 1(b) we show the distribution of rq for a single bin
on the pedestrian and natural images given a down-
sampling factor of k = 2. Observe that the information
loss is consistent: rq is normally distributed around
µ ≈ .34 < .5 for natural images (and similarly µ ≈ .33
for pedestrians). This implies that h′q ≈ µhq could serve
as a reasonable approximation for gradient histograms
in images downsampled by k = 2.

In other words, similarly to upsampling, gradient
histograms computed over original and half resolution
images tend to differ by a multiplicative constant (al-
though the constant is not the inverse of the sampling
factor). In Figure 2 we show the quality of the above

approximations on example images. The agreement be-
tween predictions and observations is accurate for typi-
cal images (but fails for images with atypical statistics).

3.3 Histograms of Normalized Gradients

Suppose we replaced the gradient magnitude M by the
normalized gradient magnitude M̃ defined as M̃(i, j) =
M(i, j)/(M(i, j)+.005), where M is the average gradient
magnitude in each 11 × 11 image patch (computed by
convolving M with an L1 normalized 11 × 11 triangle
filter). Using the normalized gradient M̃ gives improved
results in the context of object detection (see §6). Observe
that we have now introduced an additional nonlinearity
to the gradient computation; do the previous results for
gradient histograms still hold if we use M̃ instead of M?

In Figure 1(c) we plot the distribution of rq = h′q/hq
for histograms of normalized gradients given a down-
sampling factor of k = 2. As with the original gra-
dient histograms, the distributions of rq are normally
distributed and have similar means for pedestrian and
natural images (µ ≈ .26 and µ ≈ .27, respectively).
Observe, however, that the expected value of rq for
normalized gradient histograms is quite different than
for the original histograms (Figure 1(b)).

Deriving analytical expressions governing the scaling
properties of progressively more complex feature types
would be difficult or even impossible. Instead, in §4 we
describe a general law governing feature scaling.
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4 STATISTICS OF MULTISCALE FEATURES

To understand more generally how features behave in
resampled images, we turn to the study of natural image
statistics [7], [33]. The analysis below provides a deep
understanding of the behavior of multiscale features.
The practical result is a simple yet powerful approach
for predicting the behavior of gradients and other low-
level features in resampled images without resorting to
analytical derivations that may be difficult except under
the simplest conditions.

We begin by defining a broad family of features. Let
Ω be any low-level shift invariant function that takes
an image I and creates a new channel image C = Ω(I)
where a channel C is a per-pixel feature map such that
output pixels in C are computed from corresponding
patches of input pixels in I (thus preserving overall
image layout). C may be downsampled relative to I
and may contain multiple layers k. We define a feature
fΩ(I) as a weighted sum of the channel C = Ω(I):
fΩ(I) =

∑
ijk wijkC(i, j, k). Numerous local and global

features can be written in this form including gradient
histograms, linear filters, color statistics, and others [29].
Any such low-level shift invariant Ω can be used, making
this representation quite general.

Let Is denote I at scale s, where the dimensions hs×ws
of Is are s times the dimensions of I . For s > 1, Is (which
denotes a higher resolution version of I) typically differs
from I upsampled by s, while for s < 1 an excellent
approximation of Is can be obtained by downsampling
I . Next, for simplicity we redefine fΩ(Is) as1:

fΩ(Is) ≡
1

hswsk

∑
ijk

Cs(i, j, k) where Cs = Ω(Is). (2)

In other words fΩ(Is) denotes the global mean of Cs
computed over locations ij and layers k. Everything in
the following derivations based on global means also
holds for local means (e.g. local histograms).

Our goal is to understand how fΩ(Is) behaves as a
function of s for any choice of shift invariant Ω.

4.1 Power Law Governs Feature Scaling

Ruderman and Bialek [33], [67] explored how the statis-
tics of natural images behave as a function of the scale at
which an image ensemble was captured, i.e. the visual
angle corresponding to a single pixel. Let φ(I) denote an
arbitrary (scalar) image statistic and E[·] denote expecta-
tion over an ensemble of natural images. Ruderman and
Bialek made the fundamental discovery that the ratio of
E[φ(Is1)] to E[φ(Is2)], computed over two ensembles of
natural images captured at scales s1 and s2, respectively,
depends only on the ratio of s1/s2 and is independent
of the absolute scales s1 and s2 of the ensembles.

1. The definition of fΩ(Is) in Eqn. (2) differs from our previous defi-
nition in [39], where f(I, s) denoted the channel sum after resampling
by 2s. The new definition and notation allow for a cleaner derivation,
and the exponential scaling law becomes a more intuitive power law.

Ruderman and Bialek’s findings imply that E[φ(Is)]
follows a power law2:

E[φ(Is1)]/E[φ(Is2)] = (s1/s2)−λφ (3)

Every statistic φ will have its own corresponding λφ. In
the context of our work, for any channel type Ω we can
use the scalar fΩ(I) in place of φ(I) and λΩ in place
of λφ. While Eqn. (3) gives the behavior of fΩ w.r.t. to
scale over an ensemble of images, we are interested in
the behavior of fΩ for a single image.

We observe that a single image can itself be considered
an ensemble of image patches (smaller images). Since Ω
is shift invariant, we can interpret fΩ(I) as computing
the average of fΩ(Ik) over every patch Ik of I and
therefore Eqn. (3) can be applied directly for a single
image. We formalize this below.

We can decompose an image I into K smaller images
I1 . . . IK such that I = [I1 · · · IK ]. Given that Ω must
be shift invariant and ignoring boundary effects gives
Ω(I) = Ω([I1 · · · IK ]) ≈ [Ω(I1) · · ·Ω(IK)], and substitut-
ing into Eqn. (2) yields fΩ(I) ≈ ΣfΩ(Ik)/K. However,
we can consider I1 · · · IK as a (small) image ensemble,
and fΩ(I) ≈ E[fΩ(Ik)] an expectation over that en-
semble. Therefore, substituting fΩ(Is1) ≈ E[fΩ(Iks1)] and
fΩ(Is2) ≈ E[fΩ(Iks2)] into Eqn. (3) yields:

fΩ(Is1)/fΩ(Is2) = (s1/s2)−λΩ + E , (4)

where we use E to denote the deviation from the power
law for a given image. Each channel type Ω has its own
corresponding λΩ, which we can determine empirically.

In §4.2 we show that on average Eqn. (4) provides
a remarkably good fit for multiple channel types and
image sets (i.e. we can fit λΩ such that E[E ] ≈ 0). Addi-
tionally, experiments in §4.3 indicate that the magnitude
of deviation for individual images, E[E2], is reasonable
and increases only gradually as a function of s1/s2.

4.2 Estimating λ

We perform a series of experiments to verify Eqn. (4)
and estimate λΩ for numerous channel types Ω.

To estimate λΩ for a given Ω, we first compute:

µs =
1

N

N∑
i=1

fΩ(Iis)/fΩ(Ii1) (5)

for N images Ii and multiple values of s < 1, where
Iis is obtained by downsampling Ii1 = Ii. We use two
image ensembles, one of N = 1237 pedestrian images
and one of N = 4280 natural images (for details see

2. Let F (s) = E[φ(Is)]. We can rewrite the observation by saying
there exists a function R such that F (s1)/F (s2) = R(s1/s2). Applying
repeatedly gives F (s1)/F (1) = R(s1), F (1)/F (s2) = R(1/s2), and
F (s1)/F (s2) = R(s1/s2). Therefore R(s1/s2) = R(s1)R(1/s2). Next,
let R′(s) = R(es) and observe that R′(s1 + s2) = R′(s1)R′(s2) since
R(s1s2) = R(s1)R(s2). If R′ is also continuous and non-zero, then it
must take the form R′(s) = e−λs for some constant λ [68]. This implies
R(s) = R′(ln(s)) = e−λ ln(s) = s−λ. Therefore, E[φ(Is)] must follow
a power law (see also Eqn. (9) in [67]).
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(a) histograms of gradients
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(b) histograms of normalized gradients
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(d) grayscale images
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(e) local standard deviation
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(f) HOG [21]

Fig. 3. Power Law Feature Scaling: For each of six channel types we plot µs = 1
N

∑
fΩ(Iis)/fΩ(Ii1) for s ≈ 2−

1
8 , . . . , 2−

24
8 on a

log-log plot for both pedestrian and natural image ensembles. Plots of fΩ(Is1)/fΩ(Is2) for 20 randomly selected pedestrian images
are shown as faint gray lines. Additionally the best-fit line to µs for the natural images is shown. The resulting λ and expected
error |E[E ]| are given in the plot legends. In all cases the µs follow a power law as predicted by Eqn. (4) and are nearly identical
for both pedestrian and natural images, showing the estimate of λ is robust and generally applicable. The tested channels are:
(a) histograms of gradients described in §3; (b) histograms of normalized gradients described in §3.3; (c) a difference of gaussian
(DoG) filter (with inner and outer σ of .71 and 1.14, respectively); (d) grayscale images (with λ = 0 as expected); (e) pixel standard
deviation computed over local 5× 5 neighborhoods C(i, j) =

√
E[I(i, j)2]− E[I(i, j)]; (f) HOG [21] with 4× 4 spatial bins (results

were averaged over HOG’s 36 channels). Code for generating such plots is available (see chnsScaling.m in Piotr’s Toolbox).

§3.1). According to Eqn. (4), µs = s−λΩ +E[E ]. Our goal
is to fit λΩ accordingly and verify the fidelity of Eqn. (4)
for various channel types Ω (i.e. verify that E[E ] ≈ 0).

For each Ω, we measure µs according to Eqn. (5)
across three octaves with eight scales per octave for a
total of 24 measurements at s = 2−

1
8 , . . . , 2−

24
8 . Since

image dimensions are rounded to the nearest integer,
we compute and use s′ =

√
hsws/hw, where h × w

and hs × ws are the dimensions of the original and
downsampled images, respectively.

In Figure 3 we plot µs versus s′ using a log-log plot
for six channel types for both the pedestrian and natural
images3. In all cases µs follows a power law with all
measurements falling along a line on the log-log plots, as
predicted. However, close inspection shows µs does not
start exactly at 1 as expected: downsampling introduces
a minor amount of blur even for small downsampling
factors. We thus expect µs to have the form µs = aΩs

−λΩ ,
with aΩ 6= 1 as an artifact of the interpolation. Note that
aΩ is only necessary for estimating λΩ from downsam-
pled images and is not used subsequently. To estimate
aΩ and λΩ, we use a least squares fit of log2(µs′) =
a′Ω − λΩ log2(s′) to the 24 measurements computed over
natural images (and set aΩ = 2a

′
Ω ). Resulting estimates

of λΩ are given in plot legends in Figure 3.
There is strong agreement between the resulting best-

fit lines and the observations. In legend brackets in
Figure 3 we report expected error |E[E ]| = |µs−aΩs

−λΩ |

3. Figure 3 generalizes the results shown in Figure 1. However, by
switching from channel sums to channel means, µ1/2 in Figures 3(a)
and 3(b) is 4× larger than µ in Figures 1(b) and 1(c), respectively.

for both natural and pedestrian images averaged over
s (using aΩ and λΩ estimated using natural images).
For basic gradient histograms |E[E ]| = .018 for natural
images and |E[E ]| = .037 for pedestrian images. Indeed,
for every channel type Eqn. (4) is an excellent fit to the
observations µs for both image ensembles.

The derivation of Eqn. (4) depends on the distribution
of image statistics being stationary with respect to scale;
that this holds for all channel types tested, and with
nearly an identical constant for both pedestrian and
natural images, shows the estimate of λΩ is robust and
generally applicable.

4.3 Deviation for Individual Images

In §4.2 we verified that Eqn. (4) holds for an ensemble
of images; we now examine the magnitude of deviation
from the power law for individual images. We study the
effect this has in the context of object detection in §6.

Plots of fΩ(Is1)/fΩ(Is2) for randomly selected images
are shown as faint gray lines in Figure 3. The individual
curves are relatively smooth and diverge only somewhat
from the best-fit line. We quantify their deviation by
defining σs analogously to µs in Eqn. (5):

σs = stdev[fΩ(Iis)/fΩ(Ii1)] = stdev[E ], (6)

where ‘stdev’ denotes the sample standard deviation
(computed over N images) and E is the error associated
with each image and scaling factor as defined in Eqn. (4).
In §4.2 we confirmed that E[E ] ≈ 0, our goal now is to
understand how σs = stdev[E ] ≈

√
E[E2] behaves.
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Fig. 4. Power Law Deviation for Individual Images: For each of the six channel types described in Figure 3 we plot σs versus s
where σs =

√
E[E2] and E is the deviation from the power law for a single image as defined in Eqn. (4). In brackets we report σ1/2

for both natural and pedestrian images. σs increases gradually as a function of s, meaning that not only does Eqn. (4) hold for an
ensemble of images but also the deviation from the power law for individual images is low for small s.

In Figure 4 we plot σs as a function of s for the same
channels as in Figure 3. In legend brackets we report σs
for s = 1

2 for both natural and pedestrian images; for
all channels studied σ1/2 < .2. In all cases σs increases
gradually with increasing s and the deviation is low
for small s. The expected magnitude of E varies across
channels, for example histograms of normalized gradi-
ents (Figure 4(b)) have lower σs than their unnormalized
counterparts (Figure 4(a)). The trivial grayscale channel
(Figure 4(d)) has σs = 0 as the approximation is exact.

Observe that often σs is greater for natural images
than for pedestrian images. Many of the natural images
contain relatively little structure (e.g. a patch of sky),
for such images fΩ(I) is small for certain Ω (e.g. simple
gradient histograms) resulting in more variance in the
ratio in Eqn. (4). For HOG channels (Figure 4(f)), which
have additional normalization, this effect is minimized.

4.4 Miscellanea
We conclude this section with additional observations.

Interpolation Method: Varying the interpolation algo-
rithm for image resampling does not have a major effect.
In Figure 5(a), we plot µ1/2 and σ1/2 for normalized
gradient histograms computed using nearest neighbor,
bilinear, and bicubic interpolation. In all three cases both
µ1/2 and σ1/2 remain essentially unchanged.

Window Size: All preceding experiments were per-
formed on 128× 64 windows. In Figure 5(b) we plot the
effect of varying the window size. While µ1/2 remains
relatively constant, σ1/2 increases with decreasing win-
dow size (see also the derivation of Eqn. (4)).

Upsampling: The power law can predict features in
higher resolution images but not upsampled images. In
practice, though, we want to predict features in higher
resolution as opposed to (smooth) upsampled images.

(a) interpolation algorithm (b) window size

Fig. 5. Effect of the interpolation algorithm and window size
on channel scaling. We plot µ1/2 (bar height) and σ1/2 (error
bars) for normalized gradient histograms (see §3.3) . (a) Varying
the interpolation algorithm for resampling does not have a major
effect on either µ1/2 or σ1/2. (b) Decreasing window size leaves
µ1/2 relatively unchanged but results in increasing σ1/2.

Robust Estimation: In preceding derivations, when
computing fΩ(Is1)/fΩ(Is2) we assumed that fΩ(Is2) 6= 0.
For the Ω’s considered this was the case after windows
of near uniform intensity were excluded (see §3.1). Alter-
natively, we have found that excluding I with fΩ(I) ≈ 0
when estimating λ results in more robust estimates.

Sparse Channels: For sparse channels where fre-
quently fΩ(I) ≈ 0, e.g., the output of a sliding-window
object detector, σ will be large. Such channels may not
be good candidates for the power law approximation.

One-Shot Estimates: We can estimate λ as described in
§4.2 using a single image in place of an ensemble (N = 1).
Such estimates are noisy but not entirely unreasonable;
e.g., on normalized gradient histograms (with λ ≈ .101)
the mean of 4280 single image estimates of λ if .096 and
the standard deviation of the estimates is .073.

Scale Range: We expect the power law to break down
at extreme scales not typically encountered under natu-
ral viewing conditions (e.g. under high magnification).
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Fig. 6. Feature channel scaling. Suppose we have computed
C = Ω(I); can we predict Cs = Ω(Is) at a new scale s? Top:
the standard approach is to compute Cs = Ω(R(I, s)), ignoring
the information contained in C = Ω(I). Bottom: instead, based
on the power law introduced in §4, we propose to approximate
Cs by R(C, s) · s−λΩ . This approach is simple, general, and
accurate, and allows for fast feature pyramid construction.

5 FAST FEATURE PYRAMIDS

We introduce a novel, efficient scheme for computing
feature pyramids. First, in §5.1 we outline an approach
for scaling feature channels. Next, in §5.2 we show its
application to constructing feature pyramids efficiently
and we analyze computational complexity in §5.3.

5.1 Feature Channel Scaling
We propose an extension of the power law governing
feature scaling introduced in §4 that applies directly to
channel images. As before, let Is denote I captured at
scale s and R(I, s) denote I resampled by s. Suppose
we have computed C = Ω(I); can we predict the channel
image Cs = Ω(Is) at a new scale s using only C?

The standard approach is to compute Cs = Ω(R(I, s)),
ignoring the information contained in C = Ω(I). Instead,
we propose the following approximation:

Cs ≈ R(C, s) · s−λΩ (7)

A visual demonstration of Eqn. (7) is shown in Figure 6.
Eqn. (7) follows from Eqn. (4). Setting s1 = s, s2 = 1,

and rearranging Eqn. (4) gives fΩ(Is) ≈ fΩ(I)s−λΩ . This
relation must hold not only for the original images but
also for any pair of corresponding windows ws and w
in Is and I , respectively. Expanding yields:

fΩ(Iwss ) ≈ fΩ(Iw)s−λΩ

1

|ws|
∑
i,j∈ws

Cs(i, j) ≈ 1

|w|
∑
i,j∈w

C(i, j)s−λΩ

Cs ≈ R(C, s)s−λΩ

The final line follows because if for all corresponding
windows

∑
ws
C ′/|ws| ≈

∑
w C/|w|, then C ′ ≈ R(C, s).

On a per-pixel basis, the approximation of Cs in Eqn. (7)
may be quite noisy. The standard deviation σs of the ratio
fΩ(Iwss )/fΩ(Iw) depends on the size of the window w:
σs increases as w decreases (see Figure 5(b)). Therefore,
the accuracy of the approximation for Cs will improve
if information is aggregated over multiple pixels of Cs.

Fig. 7. Fast Feature Pyramids. Color and grayscale icons
represent images and channels; horizontal and vertical arrows
denote computation of R and Ω. Top: The standard pipeline for
constructing a feature pyramid requires computing Is = R(I, s)
followed by Cs = Ω(Is) for every s. This is costly. Bottom:
We propose computing Is = R(I, s) and Cs = Ω(Is) for only
a sparse set of s (once per octave). Then, at intermediate
scales Cs is computed using the approximation in Eqn. (7):
Cs ≈ R(Cs′ , s/s

′)(s/s′)−λΩ where s′ is the nearest scale for
which we have Cs′ = Ω(Is′). In the proposed scheme, the
number of computations ofR is constant while (more expensive)
computations of Ω are reduced considerably.

A simple strategy for aggregating over multiple pix-
els and thus improving robustness is to downsample
and/or smooth Cs relative to Is (each pixel in the
resulting channel will be a weighted sum of pixels in the
original full resolution channel). Downsampling Cs also
allows for faster pyramid construction (we return to this
in §5.2). For object detection, we typically downsample
channels by 4× to 8× (e.g. HOG [21] uses 8× 8 bins).

5.2 Fast Feature Pyramids
A feature pyramid is a multi-scale representation of an
image I where channels Cs = Ω(Is) are computed at
every scale s. Scales are sampled evenly in log-space,
starting at s = 1, with typically 4 to 12 scales per octave
(an octave is the interval between one scale and another
with half or double its value). The standard approach
to constructing a feature pyramid is to compute Cs =
Ω(R(I, s)) for every s, see Figure 7 (top).

The approximation in Eqn. (7) suggests a straightfor-
ward method for efficient feature pyramid construction.
We begin by computing Cs = Ω(R(I, s)) at just one scale
per octave (s ∈ {1, 1

2 ,
1
4 , . . .}). At intermediate scales,

Cs is computed using Cs ≈ R(Cs′ , s/s
′)(s/s′)−λΩ where

s′ ∈ {1, 1
2 ,

1
4 , . . .} is the nearest scale for which we have

Cs′ = Ω(Is′), see Figure 7 (bottom).
Computing Cs = Ω(R(I, s)) at one scale per octave

provides a good tradeoff between speed and accuracy.
The cost of evaluating Ω is within 33% of computing Ω(I)
at the original scale (see §5.3) and channels do not need
to be approximated beyond half an octave (keeping error
low, see §4.3). While the number of evaluations of R is
constant (evaluations of R(I, s) are replaced by R(C, s)),
if each Cs is downsampled relative to Is as described in
§5.1, evaluating R(C, s) is faster than R(I, s).
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Fig. 8. Overview of the ACF detector. Given an input image I, we compute several channels C = Ω(I), sum every block of pixels
in C, and smooth the resulting lower resolution channels. Features are single pixel lookups in the aggregated channels. Boosting
is used to learn decision trees over these features (pixels) to distinguish object from background. With the appropriate choice of
channels and careful attention to design, ACF achieves state-of-the-art performance in pedestrian detection.

Alternate schemes, such as interpolating between two
nearby scales s′ for each intermediate scale s or evaluat-
ing Ω more densely, could result in even higher pyramid
accuracy (at increased cost). However, the proposed
approach proves sufficient for object detection (see §6).

5.3 Complexity Analysis
The computational savings of computing approximate
feature pyramids is significant. Assume the cost of com-
puting Ω is linear in the number of pixels in an n × n
image (as is often the case). The cost of constructing a
feature pyramid with m scales per octave is:
∞∑
k=0

n22−2k/m = n2
∞∑
k=0

(4−1/m)k =
n2

1− 4−1/m
≈ mn2

ln 4
(8)

The second equality follows from the formula for a
sum of a geometric series; the last approximation is
valid for large m (and follows from l’Hôpital’s rule). In
the proposed approach we compute Ω once per octave
(m = 1). The total cost is 4

3n
2, which is only 33% more

than the cost of computing single scale features. Typical
detectors are evaluated on 8 to 12 scales per octave [31],
thus according to (8) we achieve an order of magnitude
savings over computing Ω densely (and intermediate Cs
are computed efficiently through resampling afterward).

6 APPLICATIONS TO OBJECT DETECTION

We demonstrate the effectiveness of fast feature pyra-
mids in the context of object detection with three dis-
tinct detection frameworks. First, in §6.1 we show the
efficacy of our approach with a simple yet state-of-the-
art pedestrian detector we introduce in this work called
Aggregated Channel Features (ACF). In §6.2 we describe an
alternate approach for exploiting approximate multiscale
features using integral images computed over the same
channels (Integral Channel Features or ICF), much as in
our previous work [29], [39]. Finally, in §6.3 we approxi-
mate HOG feature pyramids for use with Deformable Part
Models (DPM) [35].

6.1 Aggregated Channel Features (ACF)
The ACF detection framework is conceptually straight-
forward (Figure 8). Given an input image I , we compute
several channels C = Ω(I), sum every block of pixels in
C, and smooth the resulting lower resolution channels.

Features are single pixel lookups in the aggregated chan-
nels. Boosting is used to train and combine decision trees
over these features (pixels) to distinguish object from
background and a multiscale sliding-window approach
is employed. With the appropriate choice of channels
and careful attention to design, ACF achieves state-of-
the-art performance in pedestrian detection.

Channels: ACF uses the same channels as [39]: nor-
malized gradient magnitude, histogram of oriented gra-
dients (6 channels), and LUV color channels. Prior
to computing the 10 channels, I is smoothed with a
[1 2 1]/4 filter. The channels are divided into 4 × 4
blocks and pixels in each block are summed. Finally the
channels are smoothed, again with a [1 2 1]/4 filter. For
640 × 480 images, computing the channels runs at over
100 fps on a modern PC. The code is optimized but runs
on a single CPU; further gains could be obtained using
multiple cores or a GPU as in [30].

Pyramid: Computation of feature pyramids at octave-
spaced scale intervals runs at ∼75 fps on 640 × 480
images. Meanwhile, computing exact feature pyramids
with eight scales per octave slows to ∼15 fps, precluding
real-time detection. In contrast, our fast pyramid con-
struction (see §5) with 7 of 8 scales per octave approxi-
mated runs at nearly 50 fps.

Detector: For pedestrian detection, AdaBoost [69] is
used to train and combine 2048 depth-two trees over the
128 · 64 · 10/16 = 5120 candidate features (channel pixel
lookups) in each 128×64 window. Training with multiple
rounds of bootstrapping takes ∼10 minutes (a parallel
implementation reduces this to ∼3 minutes). The detector
has a step size of 4 pixels and 8 scales per octave.
For 640 × 480 images, the complete system, including
fast pyramid construction and sliding-window detection,
runs at over 30 fps allowing for real-time uses (with
exact feature pyramids the detector slows to 12 fps).

Code: Code for the ACF framework is available on-
line4. For more details on the channels and detector used
in ACF, including exact parameter settings and training
framework, we refer users to the source code.

Accuracy: We report accuracy of ACF with exact and
fast feature pyramids in Table 1. Following the method-
ology of [31], we summarize performance using the log-
average miss rate (MR) between 10−2 and 100 false pos-
itives per image. Results are reported on four pedestrian
datasets: INRIA [21], Caltech [31], TUD-Brussels [36] and

4. Code: http://vision.ucsd.edu/∼pdollar/toolbox/doc/index.html

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
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INRIA [21] Caltech [31] TUD [36] ETH [37] MEAN

Shapelet [70] 82 91 95 91 90
VJ [27] 72 95 95 90 88
PoseInv [71] 80 86 88 92 87
HikSvm [72] 43 73 83 72 68
HOG [21] 46 68 78 64 64
HogLbp [73] 39 68 82 55 61
MF [74] 36 68 73 60 59
PLS [75] 40 62 71 55 57
MF+CSS [76] 25 61 60 61 52
MF+Motion [76] – 51 55 60 –
LatSvmV2 [35] 20 63 70 51 51
FPDW [39] 21 57 63 60 50
ChnFtrs [29] 22 56 60 57 49
Crosstalk [40] 19 54 58 52 46
VeryFast [30] 16 – – 55 –
MultiResC [77] – 48 – – –
ICF-Exact §6.2 18 48 53 50 42
ICF §6.2 19 51 55 56 45
ACF-Exact §6.1 17 43 50 50 40
ACF §6.1 17 45 52 51 41

TABLE 1
MRs of leading approaches for pedestrian detection on four
datasets. For ICF and ACF exact and approximate detection
results are shown with only small differences between them.
For the latest pedestrian detection results please see [32].

ETH [37]. MRs for 16 competing methods are shown.
ACF outperforms competing approaches on nearly all
datasets. When averaged over the four datasets, the
MR of ACF is 40% with exact feature pyramids and
41% with fast feature pyramids, a negligible difference,
demonstrating the effectiveness of our approach.

Speed: MR versus speed for numerous detectors is
shown in Figure 10. ACF with fast feature pyramids
runs at ∼32 fps. The only two faster approaches are
Crosstalk cascades [40] and the VeryFast detector from
Benenson et al. [30]. Their additional speedups are based
on improved cascade strategies and combining multi-
resolution models with a GPU implementation, respec-
tively, and are orthogonal to the gains achieved by using
approximate multiscale features. Indeed, all the detectors
that run at 5 fps and higher exploit the power law
governing feature scaling.

Pyramid parameters: Detection performance on IN-
RIA [21] with fast feature pyramids under varying set-
tings is shown in Figure 11. The key result is given in Fig-
ure 11(a): when approximating 7 of 8 scales per octave,
the MR for ACF is .169 which is virtually identical to
the MR of .166 obtained using the exact feature pyramid.
Even approximating 15 of every 16 scales increases MR
only somewhat. Constructing the channels without cor-
recting for power law scaling, or using an incorrect value
of λ, results in markedly decreased performance, see
Figure 11(b). Finally, we observe that at least 8 scales per
octave must be used for good performance (Figure 11(c)),
making the proposed scheme crucial for achieving detec-
tion results that are both fast and accurate.

Fig. 9. (a) A standard pipeline for performing multiscale de-
tection is to create a densely sampled feature pyramid. (b) Viola
and Jones [27] used simple shift and scale invariant features, al-
lowing a detector to be placed at any location and scale without
relying on a feature pyramid. (c) ICF can use a hybrid approach
of constructing an octave-spaced feature pyramid followed by
approximating detector responses within half an octave of each
pyramid level.

6.2 Integral Channel Features (ICF)
Integral Channel Features (ICF) [29] are a precursor to
the ACF framework described in §6.1. Both ACF and ICF
use the same channel features and boosted classifiers; the
key difference between the two frameworks is that ACF
uses pixel lookups in aggregated channels as features
while ICF uses sums over rectangular channel regions
(computed efficiently with integral images).

Accuracy of ICF with exact and fast feature pyramids
is shown in Table 1. ICF achieves state-of-the-art results:
inferior to ACF but otherwise outperforming most com-
peting approaches. The MR of ICF averaged over the
four datasets is 42% with exact feature pyramids and
45% with fast feature pyramids. The gap of 3% is larger
than the 1% gap for ACF but still small. With fast feature
pyramids ICF runs at ∼16 fps, see Figure 10. ICF is
slower than ACF due to construction of integral images
and more expensive features (rectangular sums com-
puted via integral images versus single pixel lookups).
For more details on ICF, see [29], [39]. The variant tested
here uses identical channels to ACF.

Detection performance with fast feature pyramids un-
der varying settings is shown in Figure 12. The plots
mirror the results shown in Figure 11 for ACF. The key
result is given in Figure 12(a): when approximating 7 of
8 scales per octave, the MR for ICF is 2% worse than the
MR obtained with exact feature pyramids.

The ICF framework allows for an alternate application
of the power law governing feature scaling: instead of
rescaling channels as discussed in §5, one can instead
rescale the detector. Using the notation from §4, rectan-
gular channel sums (features used in ICF) can be written
as AfΩ(I), where A denotes rectangle area. As such,
Eqn. (4) can be applied to approximate features at nearby
scales and given integral channel images computed at
one scale, detector responses can be approximated at
nearby scales. This operation can be implemented by
rescaling the detector itself, see [39]. As the approxima-
tion degrades with increasing scale offsets, a hybrid ap-
proach is to construct an octave-spaced feature pyramid
followed by approximating detector responses at nearby
scales, see Figure 9. This approach was extended in [30].
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Fig. 10. Log-average miss rate (MR) on the INRIA pedestrian dataset [21] versus frame rate on 640× 480 images for
multiple detectors. Method runtimes were obtained from [31], see also [31] for citations for detectors A-L. Numbers
in brackets indicate MR/fps for select approaches, sorted by speed. All detectors that run at 5 fps and higher are
based on our fast feature pyramids; these methods are also the most accurate. They include: (M) FPDW [39] which is
our original implementation of ICF, (N) ICF [§6.2], (O) ACF [§6.1], (P) crosstalk cascades [40], and (Q) the VeryFast
detector from Benenson et al. [30]. Both (P) and (Q) use the power law governing feature scaling described in this
work; the additional speedups in (P) and (Q) are based on improved cascade strategies, multi-resolution models and
a GPU implementation, and are orthogonal to the gains achieved by using approximate multiscale features.

(a) fraction approximated scales (b) λ for normalized gradient channels (c) scales per octave

Fig. 11. Effect of parameter setting of fast feature pyramids on the ACF detector [§6.1]. We report log-average miss
rate (MR) averaged over 25 trials on the INRIA pedestrian dataset [21]. Orange diamonds denote default parameter
settings: 7/8 scales approximated per octave, λ ≈ .17 for the normalized gradient channels, and 8 scales per octave
in the pyramid. (a) The MR stays relatively constant as the fraction of approximated scales increases up to 7/8
demonstrating the efficacy of the proposed approach. (b) Sub-optimal values of λ when approximating the normalized
gradient channels cause a marked decrease in performance. (c) At least 8 scales per octave are necessary for good
performance, making the proposed scheme crucial for achieving detection results that are both fast and accurate.

(a) fraction approximated scales (b) λ for normalized gradient channels (c) scales per octave

Fig. 12. Effect of parameter setting of fast feature pyramids on the ICF detector [§6.2]. The plots mirror the results
shown in Figure 11 for the ACF detector, although overall performance for ICF is slightly lower. (a) When approximating
7 of every 8 scales in the pyramid, the MR for ICF is .195 which is only slightly worse than the MR of .176 obtained
using exact feature pyramids. (b) Computing approximate channels with an incorrect value of λ results in decreased
performance (although using a slightly larger λ than predicted appears to improve results marginally). (c) Similarly to
the ACF framework, at least 8 scales per octave are necessary to achieve good results.
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plane bike bird boat bottle bus car cat chair cow

DPM 26.3 59.4 2.3 10.2 21.2 46.2 52.2 7.9 15.9 17.4
∼DPM 24.1 54.7 1.6 9.8 20.0 42.1 50.1 8.0 13.8 16.7

table dog horse moto person plant sheep sofa train tv

DPM 10.9 2.9 53.4 37.6 38.2 4.9 16.6 29.7 38.2 40.8
∼DPM 8.9 2.5 49.4 38.3 36.0 4.2 14.9 24.4 35.8 35.0

TABLE 2
Average precision scores for deformable part models with exact
(DPM) and approximate (∼DPM) feature pyramids on PASCAL.

6.3 Deformable Part Models (DPM)

Deformable Part Models (DPM) from Felzenszwalb et al.
[35] are an elegant approach for general object detection
that have consistently achieved top results on the PAS-
CAL VOC challenge [38]. DPMs use a variant of HOG
features [21] as their image representation, followed
by classification with linear SVMs. An object model is
composed of multiple parts, a root model, and optionally
multiple mixture components. For details see [35].

Recent approaches for increasing the speed of DPMs
include work by Felzenszwalb et al. [44] and Pedersoli
et al. [45] on cascaded and coarse-to-fine deformable part
models, respectively. Our work is complementary as we
focus on improving the speed of pyramid construction.
The current bottleneck of DPMs is in the classification
stage, therefore pyramid construction accounts for only
a fraction of total runtime. However, if fast feature pyra-
mids are coupled with optimized classification schemes
[44], [45], DPMs have the potential to have more com-
petitive runtimes. We focus on demonstrating DPMs
can achieve good accuracy with fast feature pyramids
and leave the coupling of fast feature pyramids and
optimized classification schemes to practitioners.

DPM code is available online [35]. We tested pre-
trained DPM models on the 20 PASCAL 2007 categories
using exact HOG pyramids and HOG pyramids with 9
of 10 scales per octave approximated using our proposed
approach. Average precision (AP) scores for the two
approaches, denoted DPM and ∼DPM, respectively, are
shown in Table 2. The mean AP across the 20 categories
is 26.6% for DPMs and 24.5% for ∼DPMs. Using fast
HOG feature pyramids only decreased mean AP 2%,
demonstrating the validity of the proposed approach.

7 CONCLUSION

Improvements in the performance of visual recognition
systems in the past decade have in part come from
the realization that finely sampled pyramids of image
features provide a good front-end for image analysis. It
is widely believed that the price to be paid for improved
performance is sharply increased computational costs.
We have shown that this is not necessarily so. Finely
sampled pyramids may be obtained inexpensively by
extrapolation from coarsely sampled ones. This insight
decreases computational costs substantially.

Our insight ultimately relies on the fractal structure of
much of the visual world. By investigating the statistics
of natural images we have demonstrated that the be-
havior of image features can be predicted reliably across
scales. Our calculations and experiments show that this
makes it possible to estimate features at a given scale
inexpensively by extrapolating computations carried out
at a coarsely sampled set of scales. While our results do
not hold under all circumstances, for instance, on images
of textures or white noise, they do hold for images
typically encountered in the natural world.

In order to validate our findings we studied the per-
formance of three end-to-end object detection systems.
We found that detection rates are relatively unaffected
while computational costs decrease considerably. This
has led to the first detectors that operate at frame rate
while using rich feature representations.

Our results are not restricted to object detection nor
to visual recognition. The foundations we have devel-
oped should readily apply to other computer vision
tasks where a fine-grained scale sampling of features is
necessary as the image processing front end.
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