
1

Fast Edge Detection Using Structured Forests
Piotr Dollár and C. Lawrence Zitnick

Microsoft Research
{pdollar,larryz}@microsoft.com

Abstract—Edge detection is a critical component of many vision systems, including object detectors and image segmentation
algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take
advantage of the structure present in local image patches to learn both an accurate and computationally efficient edge detector. We
formulate the problem of predicting local edge masks in a structured learning framework applied to random decision forests. Our
novel approach to learning decision trees robustly maps the structured labels to a discrete space on which standard information gain
measures may be evaluated. The result is an approach that obtains realtime performance that is orders of magnitude faster than many
competing state-of-the-art approaches, while also achieving state-of-the-art edge detection results on the BSDS500 Segmentation
dataset and NYU Depth dataset. Finally, we show the potential of our approach as a general purpose edge detector by showing our
learned edge models generalize well across datasets.

F

1 INTRODUCTION

Edge detection has remained a fundamental task in computer
vision since the early 1970’s [18], [15], [43]. The detection
of edges is a critical preprocessing step for a variety of
tasks, including object recognition [47], [17], segmentation
[33], [1], and active contours [26]. Traditional approaches to
edge detection use a variety of methods for computing color
gradients followed by non-maximal suppression [7], [19], [50].
Unfortunately, many visually salient edges do not correspond
to color gradients, such as texture edges [34] and illusory
contours [39]. State-of-the-art edge detectors [1], [41], [31],
[21] use multiple features as input, including brightness, color,
texture and depth gradients computed over multiple scales.

Since visually salient edges correspond to a variety of visual
phenomena, finding a unified approach to edge detection is
difficult. Motivated by this observation several recent papers
have explored the use of learning techniques for edge detection
[13], [49], [31], [27]. These approaches take an image patch
and compute the likelihood that the center pixel contains an
edge. Optionally, the independent edge predictions may then
be combined using global reasoning [1], [41], [49], [2].

Edges in a local patch are highly interdependent [31].
They often contain well-known patterns, such as straight lines,
parallel lines, T-junctions or Y-junctions [40], [31]. Recently, a
family of learning approaches called structured learning [36]
has been applied to problems exhibiting similar characteristics.
For instance, [29] applies structured learning to the problem
of semantic image labeling for which local image labels are
also highly interdependent.

In this paper we propose a generalized structured learning
approach that we apply to edge detection. This approach
allows us to take advantage of the inherent structure in edge
patches, while being surprisingly computationally efficient.
We can compute edge maps in realtime, which is orders of
magnitude faster than competing state-of-the-art approaches.
A random forest framework is used to capture the structured

Fig. 1. Edge detection results using three versions of our
Structured Edge (SE) detector demonstrating tradeoffs in accu-
racy vs. runtime. We obtain realtime performance while simul-
taneously achieving state-of-the-art results. ODS numbers were
computed on BSDS [1] on which the popular gPb detector [1]
achieves a score of .73. The variants shown include SE, SE+SH,
and SE+MS+SH, see §4 for details.

information [29]. We formulate the problem of edge detection
as predicting local segmentation masks given input image
patches. Our novel approach to learning decision trees uses
structured labels to determine the splitting function at each
branch in the tree. The structured labels are robustly mapped to
a discrete space on which standard information gain measures
may be evaluated. Each forest predicts a patch of edge pixel
labels that are aggregated across the image to compute our
final edge map, see Figure 1. Since the aggregated edge maps
may be diffuse, the edge maps may optionally be sharpened
using local color and depth cues. We show state-of-the-art
results on both the BSDS500 [1] and the NYU Depth dataset
[44]. We demonstrate the potential of our approach as a general
purpose edge detector by showing the strong cross dataset
generalization of our learned edge models.

2

1.1 Related work
We now discuss related work in edge detection and structured
learning. An earlier version of this work appeared in [14].

Edge detection: Numerous papers have been written on
edge detection over the past 50 years. Early work [18], [15],
[7], [37], [19] focused on the detection of intensity or color
gradients. The popular Canny detector [7] finds the peak
gradient orthogonal to edge direction. An evaluation of various
low-level edge detectors can be found in [4] and an overview in
[50]. More recent work [34], [32], [28], [1], [48], [30] explores
edge detection under more challenging conditions.

Several techniques have explored the use of learning for
edge detection [13], [49], [32], [41], [31], [27]. Dollár et al.
[13] used a boosted classifier to independently label each pixel
using its surrounding image patch as input. Zheng et al. [49]
combine low, mid, and high-level cues and show improved
results for object-specific edge detection. Ren and Bo [41] im-
proved the result of [1] by computing gradients across learned
sparse codes of patch gradients. While [41] achieved good
results, their approach further increased the high computational
cost of [1]. Catanzaro et al. [8] improve the runtime of [1]
using parallel algorithms. Recently, Kivinen et al. [27] applied
deep networks to edge detection achieving competitive results.

Finally, Lim et al. [31] propose an edge detection approach
that classifies edge patches into sketch tokens using random
forest classifiers, that, like in our work, attempt to capture local
edge structure. Sketch tokens bear resemblance to earlier work
on shapemes [40] but are computed directly from color image
patches rather than from pre-computed edge maps. The result
is an efficient approach for detecting edges that also shows
promising results for object detection. In contrast to previous
work, we do not require the use of pre-defined classes of edge
patches. This allows us to learn more subtle variations in edge
structure and leads to a more accurate and efficient algorithm.

Structured learning: Structured learning addresses the
problem of learning a mapping where the input or output space
may be arbitrarily complex representing strings, sequences,
graphs, object pose, bounding boxes etc. [46], [45], [3]. We
refer readers to [36] for a comprehensive survey.

Our structured random forests differ from these works in
several respects. First, we assume that the output space is
structured but operate on a standard input space. Second, by
default our model can only output examples observed during
training, which implicitly assumes the existence of a set of
representative samples (this shortcoming can be ameliorated
with custom ensemble models). On the other hand, typical
structured predictors learn parameters to a scoring function and
at inference perform an optimization to obtain predictions [46],
[36]. This requires defining a scoring function and an efficient
(possibly approximate) inference procedure. In contrast, in-
ference using our structured random forest is straightforward,
general and fast (same as for standard random forests).

Finally, our work was inspired by recent work from
Kontschieder et al. [29] on learning random forests for struc-
tured class labels for the specific case where the output labels
represent a semantic image labeling for an image patch. The
key observation made by Kontschieder et al. is that given
a color image patch, the leaf node reached in a tree is

independent of the structured semantic labels, and any type of
output can be stored at each leaf. Building on this, we propose
a general learning framework for structured output forests that
can be used with a broad class of output spaces. We apply our
framework to learning an accurate and fast edge detector.

2 RANDOM DECISION FORESTS
We begin with a review of random decision forests [6],
[5], [20]. Throughout our presentation we adopt the notation
and terminology of the extensive recent survey by Criminisi
et al. [11], somewhat simplified for ease of presentation. The
notation in [11] is sufficiently general to support our extension
to random forests with structured outputs.

A decision tree ft(x) classifies a sample x ∈ X by
recursively branching left or right down the tree until a leaf
node is reached. Specifically, each node j in the tree is
associated with a binary split function:

h(x, θj) ∈ {0, 1} (1)

with parameters θj . If h(x, θj) = 0 node j sends x left,
otherwise right, with the process terminating at a leaf node.
The output of the tree on an input x is the prediction stored
at the leaf reached by x, which may be a target label y ∈ Y
or a distribution over the labels Y .

While the split function h(x, θ) may be arbitrarily complex,
a common choice is a ‘stump’ where a single feature dimen-
sion of x is compared to a threshold. Specifically, θ = (k, τ)
and h(x, θ) = [x(k) < τ], where [·] denotes the indicator
function. Another popular choice is θ = (k1, k2, τ) and
h(x, θ) = [x(k1) − x(k2) < τ]. Both are computationally
efficient and effective in practice [11].

A decision forest is an ensemble of T independent trees ft.
Given a sample x, the predictions ft(x) from the set of trees
are combined using an ensemble model into a single output.
Choice of ensemble model is problem specific and depends on
Y , common choices include majority voting for classification
and averaging for regression, although more sophisticated
ensemble models may be employed [11].

Observe that arbitrary information may be stored at the
leaves of a decision tree. The leaf node reached by the tree
depends only on the input x, and while predictions of multiple
trees must be merged in some useful way (the ensemble
model), any type of output y can be stored at each leaf. This
allows use of complex output spaces Y , including structured
outputs as observed by Kontschieder et al. [29].

While prediction is straightforward, training random de-
cision forests with structured Y is more challenging. We
review the standard learning procedure next and describe our
generalization to learning with structured outputs in §3.

2.1 Training Decision Trees
Each tree is trained independently in a recursive manner. For
a given node j and training set Sj ⊂ X × Y , the goal is to
find parameters θj of the split function h(x, θj) that result in a
‘good’ split of the data. This requires defining an information
gain criterion of the form:

Ij = I(Sj ,SLj ,SRj) (2)

3

where SLj = {(x, y) ∈ Sj |h(x, θj) = 0}, SRj = Sj\SLj . Split-
ting parameters θj are chosen to maximize the information
gain Ij ; training then proceeds recursively on the left node
with data SLj and similarly for the right node. Training stops
when a maximum depth is reached or if information gain or
training set size fall below fixed thresholds.

For multiclass classification (Y ⊂ Z) the standard definition
of information gain can be used:

Ij = H(Sj)−
∑

k∈{L,R}

|Skj |
|Sj |

H(Skj) (3)

where H(S) = −
∑
y py log(py) denotes the Shannon entropy

and py is the fraction of elements in S with label y. Alterna-
tively the Gini impurity H(S) =

∑
y py(1−py) has also been

used in conjunction with Eqn. (3) [6].
For regression, entropy and information gain can be ex-

tended to continuous variables [11]. Alternatively, a common
approach for single-variate regression (Y = R) is to minimize
the variance of labels at the leaves [6]. If we write the variance
as H(S) = 1

|S|
∑
y(y − µ)2 where µ = 1

|S|
∑
y y, then

substituting H for entropy in Eqn. (3) leads to the standard
criterion for single-variate regression.

Can we define a more general information gain criterion for
Eqn. (2) that generalizes well for arbitrary output spaces Y?
Surprisingly yes, given mild additional assumptions about Y .
Before going into detail in §3, we discuss the key role that
randomness plays in the training of decision forests next.

2.2 Randomness and Optimality

Individual decision trees exhibit high variance and tend to
overfit [24], [6], [5], [20]. Decision forests ameliorate this
by training multiple de-correlated trees and combining their
output. A crucial component of the training procedure is
therefore to achieve a sufficient diversity of trees.

Diversity of trees can be obtained either by randomly
subsampling the data used to train each tree [6] or randomly
subsampling the features and splits used to train each node
[24]. Injecting randomness at the level of nodes tends to
produce higher accuracy models [20] and has proven more
popular [11]. Specifically, when optimizing Eqn. (2), only a
small set of possible θj are sampled and tested when choosing
the optimal split. E.g., for stumps where θ = (k, τ) and
h(x, θ) = [x(k) < τ], [20] advocates sampling

√
d features

where X = Rd and a single threshold τ per feature.
In effect, accuracy of individual trees is sacrificed in favor

of a high diversity ensemble [20]. Leveraging similar intuition
allows us to introduce an approximate information gain cri-
terion for structured labels, described next, and leads to our
generalized structured forest formulation.

3 STRUCTURED RANDOM FORESTS

In this section we extend random decision forests to general
structured output spaces Y . Of particular interest for computer
vision is the case where x ∈ X represents an image patch
and y ∈ Y encodes the corresponding local image annotation

(e.g., a segmentation mask or set of semantic image labels).
However, we keep our derivation general.

Training random forests with structured labels poses two
main challenges. First, structured output spaces are often high
dimensional and complex. Thus scoring numerous candidate
splits directly over structured labels may be prohibitively
expensive. Second, and more critically, information gain over
structured labels may not be well defined.

We use the observation that even approximate measures
of information gain suffice to train effective random forest
classifiers [20], [29]. ‘Optimal’ splits are not necessary or even
desired, see §2.2. Our core idea is to map all the structured
labels y ∈ Y at a given node into a discrete set of labels c ∈ C,
where C = {1, . . . , k}, such that similar structured labels y are
assigned to the same discrete label c.

Given the discrete labels C, information gain calculated
directly and efficiently over C can serve as a proxy for the
information gain over the structured labels Y . As a result at
each node we can leverage existing random forest training
procedures to learn structured random forests effectively.

Our approach to calculating information gain relies on mea-
suring similarity over Y . However, for many structured output
spaces, including those used for edge detection, computing
similarity over Y is not well defined. Instead, we define a
mapping of Y to an intermediate space Z in which distance
is easily measured. We therefore utilize a broadly applicable
two-stage approach of first mapping Y → Z followed by a
straightforward mapping of Z → C.

We describe the proposed approach in more detail next and
return to its application to edge detection in §4.

3.1 Intermediate Mapping Π

Our key assumption is that for many structured output spaces,
including for structured learning of edge detection, we can
define a mapping of the form:

Π : Y → Z (4)

such that we can approximate dissimilarity of y ∈ Y by
computing Euclidean distance in Z . For example, as we
describe in detail in §4, for edge detection the labels y ∈ Y
are 16 × 16 segmentation masks and we define z = Π(y) to
be a long binary vector that encodes whether every pair of
pixels in y belong to the same or different segments. Distance
is easily measured in the resulting space Z .
Z may be high dimensional which presents a challenge

computationally. For example, for edge detection there are(
16·16

2

)
= 32640 unique pixel pairs in a 16× 16 segmentation

mask, so computing z for every y would be expensive. How-
ever, as only an approximate distance measure is necessary,
the dimensionality of Z can be reduced.

In order to reduce dimensionality, we sample m dimen-
sions of Z , resulting in a reduced mapping Πφ : Y → Z
parametrized by φ. During training, a distinct mapping Πφ

is randomly generated and applied to training labels Yj at
each node j. This serves two purposes. First, Πφ can be
considerably faster to compute than Π. Second, sampling Z

4

Fig. 2. Illustration of the decision tree node splits: (a) Given a set of structured labels such as segments, a splitting function must
be determined. Intuitively a good split (b) groups similar segments, whereas a bad split (c) does not. In practice we cluster the
structured labels into two classes (d). Given the class labels, a standard splitting criterion, such as Gini impurity, may be used (e).

injects additional randomness into the learning process and
helps ensure a sufficient diversity of trees, see §2.2.

Finally, Principal Component Analysis (PCA) [25] can be
used to further reduce the dimensionality of Z . PCA denoises
Z while approximately preserving Euclidean distance. In
practice, we use Πφ with m = 256 dimensions followed by a
PCA projection to at most 5 dimensions.

3.2 Information Gain Criterion
Given the mapping Πφ : Y → Z , a number of choices for the
information gain criterion are possible. For discrete Z multi-
variate joint entropy could be computed directly. Kontschieder
et al. [29] proposed such an approach, but due to its complexity
of O(|Z|m), were limited to using m ≤ 2. Our experiments
indicate m ≥ 64 is necessary to accurately capture similarities
between elements in Z . Alternatively, given continuous Z ,
variance or a continuous formulation of entropy [11] can be
used to define information gain. In this work we propose a
simpler, extremely efficient approach.

We map a set of structured labels y ∈ Y into a discrete
set of labels c ∈ C, where C = {1, . . . , k}, such that labels
with similar z are assigned to the same discrete label c, see
Figure 2. The discrete labels may be binary (k = 2) or
multiclass (k > 2). This allows us to use standard information
gain criteria based on Shannon entropy or Gini impurity as
defined in Eqn. (3). Critically, discretization is performed
independently when training each node and depends on the
distribution of labels at a given node (contrast with [31]).

We consider two straightforward approaches to obtaining
the discrete label set C given Z . Our first approach is to
cluster z into k clusters using K-means (projecting z onto 5
dimensions prior to clustering). Alternatively, we can quantize
z based on the top log2(k) PCA dimensions, assigning z a
discrete label c according to the orthant (generalization of
quadrant) into which z falls. Both approaches perform sim-
ilarly but the latter is slightly faster. We use PCA quantization
to obtain k = 2 labels unless otherwise specified.

3.3 Ensemble Model
Finally, we define how to combine a set of n labels y1 . . . yn
into a single prediction for both training (to set leaf labels)
and testing (to merge predictions). As before, we sample an
m dimensional mapping Πφ and compute zi = Πφ(yi) for

each i. We select the label yk whose zk is the medoid, i.e. the
zk that minimizes the sum of distances to all other zi1. Note
that typically we only need to compute the medoid for small
n (either for training a leaf node or merging the output of
multiple trees), hence using a coarse distance metric suffices.

The biggest limitation is that any prediction y ∈ Y must
have been observed during training; the ensemble model is
unable to synthesize novel labels. Indeed, this is impossible
without additional information about Y . In practice, domain
specific ensemble models are preferable. For example, in edge
detection we apply structured prediction to obtain edge maps
for each image patch independently and merge overlapping
predictions by averaging (note that in this case structured
prediction operates at the patch level and not the image level).

4 EDGE DETECTION
We now describe how to apply our structured forests to edge
detection. As input our method takes an image that may
contain multiple channels, such as an RGB or RGBD image.
The task is to label each pixel with a binary variable indicating
whether the pixel contains an edge or not. Similar to the task
of semantic image labeling [29], the labels within a small
image patch are highly interdependent, providing a promising
candidate problem for our structured forest approach.

We assume we are given a set of segmented training images,
in which the boundaries between the segments correspond to
contours [1], [44]. Given an image patch, its annotation can
be specified either as a segmentation mask indicating segment
membership for each pixel (defined up to a permutation) or a
binary edge map. We use y ∈ Y = Zd×d to denote the former
and y′ ∈ Y ′ = {0, 1}d×d for the latter, where d indicates
patch width. An edge map y′ can always be trivially derived
from segmentation mask y, but not vice versa. We utilize both
representations in our approach.

Next, we describe how we compute the input features x,
the mapping functions Πφ used to determine splits, and the
ensemble model used to combine multiple predictions.

Input features: Our learning approach predicts a structured
16×16 segmentation mask from a larger 32×32 image patch.
We begin by augmenting each image patch with multiple
additional channels of information, resulting in a feature vector

1. The medoid zk minimizes
∑

ij(zkj − zij)2. This is equivalent to
mink

∑
j(zkj − z̄j)2 and can be computed efficiently in time O(nm).

5

x ∈ R32×32×K where K is the number of channels. We use
features of two types: pixel lookups x(i, j, k) and pairwise
differences x(i1, j1, k)− x(i2, j2, k), see §2.

Inspired by Lim et al. [31], we use a similar set of color
and gradient channels (originally developed for fast pedestrian
detection [12]). We compute 3 color channels in CIE-LUV
color space along with normalized gradient magnitude at 2
scales (original and half resolution). Additionally, we split
each gradient magnitude channel into 4 channels based on
orientation. The result is 3 color, 2 magnitude and 8 orientation
channels, for a total of 13 channels.

We blur the channels with a radius 2 triangle filter and
downsample by a factor of 2, resulting in 32 ·32 ·13/4 = 3328
candidate features x. Motivated by [31], we also compute
pairwise difference features. We apply a large triangle blur to
each channel (8 pixel radius), and downsample to a resolution
of 5 × 5. Sampling all candidate pairs and computing their
differences yields an additional

(
5·5
2

)
= 300 candidate features

per channel, resulting in 7228 total candidate features.

Mapping function: To train decision trees, we need to define
a mapping Π : Y → Z as described in §3. Recall that our
structured labels y are 16×16 segmentation masks. One option
is to use Π : Y → Y ′, where y′ represents the binary edge map
corresponding to y. Unfortunately Euclidean distance over Y ′
yields a brittle distance measure.

We therefore define an alternate mapping Π. Let y(j) for
1 ≤ j ≤ 256 denote the segment index of the jth pixel of y.
Individually a single value y(j) yields no information about
y, since y is defined only up to a permutation. Instead we can
sample a pair of locations j1 6= j2 and check if they belong
to the same segment, y(j1) = y(j2). This allows us to define
z = Π(y) as a large binary vector that encodes [y(j1) =
y(j2)] for every unique pair of indices j1 6= j2. While Z has(
256
2

)
dimensions, in practice we only compute a subset of

m dimensions as discussed in §3.2. We found a setting of
m = 256 and k = 2 gives good results, effectively capturing
the similarity of segmentation masks.

Ensemble model: Random forests achieve robust results by
combining the output of multiple trees. While merging seg-
mentation masks y ∈ Y for overlapping patches is difficult,
multiple overlapping edge maps y′ ∈ Y ′ can be averaged to
yield a soft edge response. Thus in addition to the learned
mask y, we also store the corresponding edge map y′ at each
leaf node, thus allowing predictions to be combined quickly
and simply through averaging during inference.

Efficiency: The surprising efficiency of our approach derives
from the use of structured labels that predict information for an
entire image neighborhood. This greatly reduces the number of
trees T that need to be evaluated. We compute our structured
output densely on the image with a stride of 2 pixels, thus with
16 × 16 output patches, each pixel receives 162T/4 ≈ 64T
predictions. In practice we use T = 4 and thus the score of
each pixel in the output edge map is averaged over 256 votes.

A critical assumption is that predictions are uncorrelated.
Since both the inputs and outputs of each tree overlap, we
train 2T total trees and evaluate an alternating set of T trees
at each adjacent location. Use of such a ‘checkerboard pattern’

improves results somewhat, introducing larger separation be-
tween the trees did not improve results further.

4.1 Multiscale Detection (SE+MS)
We now describe the first of two enhancements to our base
algorithm. Inspired by the work of Ren [38], we implement a
multiscale version of our edge detector. Given an input image
I , we run our structured edge detector on the original, half,
and double resolution version of I and average the result of
the three edge maps after resizing to the original image dimen-
sions. Although somewhat inefficient, the approach noticeably
improves edge quality. We refer to the multiscale version of
our structured edge detector as SE+MS.

4.2 Edge Sharpening (SE+SH)
We observed that predicted edge maps from our structured
edge detector are somewhat diffuse. For strong, isolated edges
non-maximal suppression can be used to effectively detect
edge peaks. However, given fine image structures edge re-
sponses can ‘bleed’ together resulting in missed detections;
likewise, for weak edges that receive few votes no clear peak
may emerge. The underlying cause for the diffuse edge re-
sponses is that the individually predicted edge maps are noisy
and are not perfectly aligned to each other or the underlying
image data. Specifically, each overlapping prediction may be
shifted by a few pixels from the true edge location.

To address this phenomenon, we introduce a new sharp-
ening procedure that aligns edge responses from overlapping
predictions. Our core observation is that local image color and
depth values can be used to more precisely localize predicted
responses. Intuitively, given a predicted segmentation mask,
the mask can be morphed slightly so that it better matches the
underlying image patch. Aligning overlapping masks to the
underlying image data implicitly aligns the masks with each
other, resulting in sharper, better localized edge responses.

Sharpening takes a predicted segmentation mask y ∈ Y
and the corresponding image patch x ∈ X and produces a
new mask that better aligns to x. As before, let y(j) denote
the segment index of the jth pixel of mask y. First, for each
segment s, we compute its mean color µs = E[x(j)|y(j) = s]
using all pixels j in s. Next, we iteratively update the assigned
segment for each pixel by assigning it to the segment which
minimizes ‖µs − x(j)‖2. For each pixel we restrict the set
of assignable segments to the segments that are immediately
adjacent to it (4-connected neighborhood). Given the new
sharpened segmentation masks, we compute and average their
corresponding edge maps as before. However, since the edge
maps are better aligned to the image data the resulting aggre-
gated edge map is sharper.

Sharpening can be repeated multiple times prior to averag-
ing the corresponding edge maps. Experiments reveal that the
first sharpening step produces the largest gains, and in practice
two steps suffice. Taking advantage of the sparsity of edges,
the sharpening procedure can be implemented efficiently. For
details we direct readers to source code. Note that sharpening
is not guaranteed to improve results but we find it is quite
effective in practice. We refer to the sharpened versions of
our structured edge detector as SE+SH and SE+MS+SH.

6

gr
ou

nd
tr

ut
h

gP
b+

ow
t+

uc
m

Sk
et

ch
To

ke
ns

SC
G

SE
SE

+M
S

SE
+S

H
SE

+M
S+

SH

Fig. 3. Illustration of edge detection results on the BSDS500 dataset on five sample images. The first two rows show the original
image and ground truth. The next three rows contain results for gPb-owt-ucm [1], Sketch Tokens [31], and SCG [41]. The final four
rows show our results for variants of SE. Use viewer zoom functionality to see fine details.

7

gr
ou

nd
tr

ut
h

hi
gh

pr
ec

is
io

n
op

tim
al

th
re

sh
hi

gh
re

ca
ll

Fig. 4. Visualizations of matches and errors of SE+MS+SH compared to BSDS ground truth edges. Edges are thickened to two
pixels for better visibility; the color coding is green=true positive, blue=false positive, red=false negative. Results are shown at three
thresholds: high precision (T≈.26, P≈0.88, R=.50), ODS threshold (T≈.14, P=R≈.75), and high recall (T≈.05, P=.50, R≈0.93).

5 RESULTS
In this section we analyze the performance of our structured
edge (SE) detector in detail. First we analyze the influence
of parameters in §5.1 and test SE variants in §5.2. Next, we
compare results on the BSDS [1] and NYUD [44] datasets
to the state-of-the-art in §5.3 and §5.4, respectively, reporting
both accuracy and runtime. We conclude by demonstrating the
cross dataset generalization of our approach in §5.5.

The majority of our experiments are performed on the
Berkeley Segmentation Dataset and Benchmark (BSDS500)
[35], [1]. The dataset contains 200 training, 100 validation,
and 200 testing images. Each image has hand labeled ground
truth contours. Edge detection accuracy is evaluated using
three standard measures: fixed contour threshold (ODS), per-
image best threshold (OIS), and average precision (AP) [1].
To evaluate accuracy in the high recall regime, we additionally
introduce a new measure, recall at 50% precision (R50), in
§5.2. Prior to evaluation, we apply a standard non-maximal
suppression technique to our edge maps to obtain thinned
edges [7]. Example detections on BSDS are shown in Figure 3
and visualizations of edge accuracy are shown in Figure 4.

5.1 Parameter Sweeps
We set all parameters with the help of the BSDS validation set
which is fully independent of the test set. Parameters include:

structured forest splitting parameters (e.g., m and k), feature
parameters (e.g., image and channel blurring), and model
and tree parameters (e.g. number of trees and data quantity).
Training takes ∼20 minute per tree using one million patches
and is parallelized over trees. Evaluation of trees is parallelized
as well, we use a quad-core machine for all reported runtimes.

In Figures 5-7 we explore the effect of choices of splitting,
model and feature parameters. For each experiment we train
on the 200 image training set and measure edge detection
accuracy on the 100 image validation set (using the standard
ODS performance metric). All results are averaged over 5
trials. First, we set all parameters to their default values
indicated by orange markers in the plots. Then, keeping all but
one parameter fixed, we explore the effect on edge detection
accuracy as a single parameter is varied.

Since we explore a large number of parameters settings, we
perform our experiments using a slightly reduced accuracy
model that is faster to train. Specifically we train using fewer
patches (2 · 105 versus 106) and utilize sharpening (SH) but
not multiscale detection (MS). Also, the validation set is
more challenging than the test set and we evaluate using 25
thresholds instead of 99, further reducing accuracy (.71 ODS).
Finally, we note that sweep details have changed slightly from
the our previous work [14]; most notably, the sweeps now
utilize sharpening but not multiscale detection.

8

1 4 16 64 256

65

70

O
D

S
 ×

 1
0
0

2 4 8 16 32
66

68

70

72

O
D

S
 ×

 1
0
0

(a) m (size of Z) (b) k (size of C)

pca kmeans
66

68

70

72

O
D

S
 ×

 1
0
0

gini entropy twoing
66

68

70

72

O
D

S
 ×

 1
0
0

(c) discretization type (d) information gain

Fig. 5. Splitting parameter sweeps. See text for details.

1 3 5 7
66

68

70

72

O
D

S
 ×

 1
0
0

0 2 4 6 8
66

68

70

72

O
D

S
 ×

 1
0
0

(a) # grid cells (b) # gradient orients

0 1 2 4 8
66

68

70

72

O
D

S
 ×

 1
0
0

1 2 4
66

68

70

72

O
D

S
 ×

 1
0
0

(c) normalization radius (d) channel downsample

0 1 2 4 8 16
66

68

70

72

O
D

S
 ×

 1
0
0

0 1 2 4 8 16
66

68

70

72

O
D

S
 ×

 1
0
0

(e) channel blur (f) self-similarity blur

Fig. 6. Feature parameter sweeps. See text for details.

Splitting Parameters: In Figure 5 we explore how best
to measure information gain over structured labels. Recall we
utilize a two-stage approach of mapping Y → Z followed by
Z → C. Plots (a) and (b) demonstrate that m = |Z| should
be large and k = |C| small. Results are robust to both the
discretization method and the discrete measure of information
gain as shown in plots (c) and (d).

Feature Parameters: Figure 6 shows how varying the
channel features affects accuracy. We refer readers to §4 and
source code for details, here we only note that performance is
relatively insensitive to a broad range of parameter settings.

Model Parameters: In Figure 7 we plot the influence of
parameters governing the model and training data. (a) and (b)
show the effect of image and label patch sizes on accuracy,
32 × 32 image patches and 16 × 16 label patches are best.
(c) and (d) show that increasing the number of patches and
training images improves accuracy. (e) shows that about half
the sampled patches should be ‘positive’ (have more than
one ground truth segment) and (f) shows that training each
tree with a fraction of total features has negligible impact on
accuracy (but results in proportionally lower memory usage).
In (g)-(i) we see that many, deep, un-pruned trees give best
performance (nevertheless, we prune trees so every node has
at least 8 training samples to decrease model size). Finally (j)
shows that two sharpening steps give best results. Impact of
sharpening is explored in more detail next in §5.2.

8 16 24 32 48 64
66

68

70

72

O
D

S
 ×

 1
0
0

4 8 12 16 24 32
66

68

70

72

O
D

S
 ×

 1
0
0

(a) patch size for x (b) patch size for y

1 2 5 10 20 50 100 200
66

68

70

72

O
D

S
 ×

 1
0
0

10 20 50 100 200
66

68

70

72

O
D

S
 ×

 1
0
0

(c) # train patches ×104 (d) # train images

.2 .3 .4 .5 .6 .7 .8
66

68

70

72

O
D

S
 ×

 1
0
0

1/4 1/8 1/16 1/32 1/64
66

68

70

72

O
D

S
 ×

 1
0
0

(e) fraction ‘positives’ (f) fraction features

1 2 4 8 16
66

68

70

72

O
D

S
 ×

 1
0
0

4 8 16 32 64

66

68

70

72

O
D

S
 ×

 1
0
0

(g) # decision trees (h) max tree depth

2 4 6 8 10 12 14 16
66

68

70

72

O
D

S
 ×

 1
0
0

0 1 2 3 4
66

68

70

72

O
D

S
 ×

 1
0
0

(i) min samples per node (j) # sharpening steps

Fig. 7. Model parameter sweeps. See text for details.

5.2 Structured Edge Variants

Given our trained detector, sharpening (SH) and multiscale
detection (MS) can be used to enhance results. In this section
we analyze the performance of the four resulting combinations.
We emphasize that the same trained model can be used with
sharpening and multiscale detection enabled at runtime.

In Figure 8 we plot precision/recall curves for the four vari-
ants of our approach: SE, SE+MS, SE+SH, and SE+MS+SH.
Summary statistics are reported in the bottom rows of Ta-
ble 1. SE has an ODS score of .73 and SE+MS and SE+SH
both achieve an ODS of .74. SE+MS+SH, which combines
multiscale detection and sharpening2, yields an ODS of .75.
In all cases OIS, which is measured using a separate optimal
threshold per image, is about 2 points higher than ODS.

As these results indicate, both sharpening and multiscale
detection improve accuracy. To further analyze these enhance-
ments, we introduce a new evaluation metric: recall at 50%
precision (R50), which measures accuracy in the high recall
regime. SE achieves R50 of .90 and SE+MS does not improve
this. In contrast, SE+SH boosts R50 considerably to .93. This
increase in recall for the SE variants can clearly be seen
in Figure 8. The MS variants, on the other hand, improve
precision in the low-recall regime. Overall, both SH and MS
improve AP3, with SE+SH+MS achieving an AP of .80.

2. We trained the top-performing SE+MS+SH model with 4 · 106 patches
compared to 106 for the other SE models, further increasing ODS by ∼.004.

3. We discovered an error in the BSDS evaluation which overestimates AP
by 1%. For consistency with past results, however, we used the code as is.

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

[F=.80] Human

[F=.75] SE+MS+SH

[F=.74] SE+MS

[F=.74] SE+SH

[F=.73] SE

Fig. 8. Results of structured edges (SE) with sharpening (+SH)
and multiscale detection (+MS). SH increases recall while MS
increases precision; their combination gives best results.

ODS OIS AP R50 FPS

Human .80 .80 - - -
Canny .60 .63 .58 .75 15
Felz-Hutt [16] .61 .64 .56 .78 10
Normalized Cuts [10] .64 .68 .45 .81 -
Mean Shift [9] .64 .68 .56 .79 -
Hidayat-Green [23] .62† - - - 20
BEL [13] .66† - - - 1/10
Gb [30] .69 .72 .72 .85 1/6
gPb + GPU [8] .70† - - - 1/2‡

ISCRA [42] .72 .75 .46 .89 1/30‡

gPb-owt-ucm [1] .73 .76 .73 .89 1/240
Sketch Tokens [31] .73 .75 .78 .91 1
DeepNet [27] .74 .76 .76 - 1/5‡

SCG [41] .74 .76 .77 .91 1/280
SE+multi-ucm [2] .75 .78 .76 .91 1/15
SE .73 .75 .77 .90 30
SE+SH .74 .76 .79 .93 12.5
SE+MS .74 .76 .78 .90 6
SE+MS+SH .75 .77 .80 .93 2.5

TABLE 1
Results on BSDS500. †BSDS300 results. ‡Utilizes the GPU.

The runtime of the four variants is reported in the last
column of Table 1. SE runs at a frame rate of 30hz, enabling
real time processing. Both SH and MS slow the detector, with
MS incurring a higher cost. Nevertheless, SE+SH runs at over
12hz while achieving excellent accuracy. Indeed, in the high
recall regime, which is necessary for many common scenarios,
SE+SH achieves top results. Given its speed and high recall,
we expect SE+SH to be the default variant used in practice.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

[F=.80] Human

[F=.75] SE+multi−ucm

[F=.75] SE (ours)

[F=.74] SCG

[F=.73] Sketch Tokens

[F=.73] gPb−owt−ucm

[F=.72] ISCRA

[F=.69] Gb

[F=.64] Mean Shift

[F=.64] Normalized Cuts

[F=.61] Felz−Hutt

[F=.60] Canny

Fig. 9. Results on BSDS500. Structured edges (SE) and SE
coupled with hierarchical multiscale segmentation (SE+multi-
ucm) [2] achieve top results. For the SE result we report the
SE+MS+SH variant. See Table 1 for additional details including
method citations and runtimes. SE is orders of magnitude faster
than nearly all edge detectors with comparable accuracy.

5.3 BSDS500 Results
We compare our edge detector against competing methods,
reporting both accuracy and runtime. Precision/recall curves
are shown in Figure 9 and summary statistics are in Table 1.

Our full approach, SE+MS+SH, outperforms all state-of-
the-art approaches [41], [27], [31], [1], [42]. We improve
ODS/OIS by 1 point over competing methods and AP/R50 by
2 points. Our edge detector is particularly effective in the high
recall regime. The only method with comparable accuracy is
SE+multi-ucm [2] which couples our SE+MS detector with a
hierarchical multiscale segmentation approach.

SE+MS+SH is orders of magnitude faster than nearly all
edge detectors with comparable accuracy, see last column of
Table 1. All runtimes are reported on 480× 320 images. Our
approach scales linearly with image size and and is parallelized
across four cores. While many competing methods are likewise
linear, they have a much higher cost per pixel. The single scale
variant of our detector, SE+SH, further improves speed by 5×
with only minor loss in accuracy and no loss in recall. Finally,
SE runs at 30hz while still achieving competitive accuracy.

In comparison to other learning-based approaches to edge
detection, we considerably outperform BEL [13] which com-
putes edges independently at each pixel given its surrounding
image patch. We also outperform Sketch Tokens [31] in both
accuracy and runtime performance. This may be the result
of Sketch Tokens using a fixed set of classes for selecting
split criterion at each node, whereas our structured forests can
capture finer patch edge structure. Moreover, our structured
output leads to significantly smoother edge maps, see Figure 3.
Finally, Kivinen et al. [27] recently trained deep networks for
edge detection; unfortunately, we were unable to obtain results
from the authors to perform detailed comparisons.

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

[F=.69] SE−RGBD

[F=.65] SE−RGB

[F=.64] SE−BSDS

[F=.64] SE−D

Fig. 10. Precision/recall curves on NYUD using different image
modalities. SE-BSDS is the RGB model trained on the BSDS
dataset. See Table 2 and 3 and text for details.

ODS OIS AP R50 FPS

gPb-owt-ucm [1] .63 .66 .56 .79 1/360
Silberman [44] .65 .66 .29 .84 1/360+
gPb+NG [21] .68 .71 .63 .86 1/375
SE+NG+ [22] .71 .72 .74 .90 1/15
SE-D .64 .65 .66 .80 7.5
SE-RGB .65 .67 .65 .84 7.5
SE-RGBD .69 .71 .72 .89 5

TABLE 2
Results on the NYUD dataset [44].

5.4 NYUD Results

The NYU Depth (NYUD) dataset [44] is composed of 1449
pairs of RGB and depth images with corresponding semantic
segmentations. The dataset was adopted independently for
edge detection by Ren and Bo [41] and by Gupta et al. [21]. In
practice, the two dataset variants have significant differences.
Specifically, [41] proposed a different train/test split and used
half resolution images. Instead, [21] use the train/test split
originally proposed by Silberman et al. [44] and full resolution
images. In our previous work we used the version from [41] in
our experiments; in the present work we switch to the version
from Gupta et al. [21] as more methods have been evaluated
on this variant and it utilizes the full resolution images.

Gupta et al. [21] split the NYUD dataset into 381 training,
414 validation, and 654 testing images and generated ground
truth edges from the semantic segmentations provided by [44].
The original 640×480 images are cropped to discard boundary
regions with missing ground truth. Finally the maximum slop
allowed for correct matches of edges to ground truth during
evaluation is increased from .0075 of the image diagonal to

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

[F=.71] SE+NG+

[F=.69] SE (ours)

[F=.68] gPb+NG

[F=.65] Silberman

[F=.63] gPb−owt−ucm

Fig. 11. Results on NYUD. Structured edges (SE) and SE
coupled with depth normal gradient (SE+NG+) [21], [22] achieve
top results. For the SE result we report the SE+SH variant. See
Table 2 for additional details including citations and runtimes.

.011. This is necessary to compensate for the relatively inexact
localization of the ground truth.

Example SE results are shown in Figure 12. We treat
the depth channel in the same manner as the other color
channels. Specifically, we recompute the gradient channels
over the depth channel (with identical parameters) resulting
in 11 additional channels. Precision/recall curves for SE+SH
with different image modalities are shown in Figure 10. Use of
depth information only (SE-D) gives good precision as strong
depth discontinuities nearly always correspond to edges. Use
of intensity information only (SE-RGB) gives better recall as
nearly all edges have intensity discontinuities but not all edges
have depth discontinuities. As expected, simultaneous use of
intensity and depth (SE-RGBD) substantially improves results.

Summary statistics are given in Table 2. Runtime is slower
than on BSDS as NYUD images are higher resolution and
features must be computed over both intensity and depth. For
these results we utilized the SE+SH variant which slightly
outperformed SE+MS+SH on this dataset.

In Table 2 and Figure 11 we compare our approach, SE+SH,
to a number of state-of-the-art approaches, including gPb-
owt-ucm (color only), Silberman et al.’s RGBD segmentation
algorithm [44], and detectors from Gupta et al. [21], [22]
that explicitly estimate depth normal gradient (NG). While
our approach naively utilizes depth (treating the depth image
identically to the intensity image), we outperform nearly all
competing methods, including gPb+NG [21]. Gupta et al. [22]
obtain top results by coupling our structured edges detector
with depth normal gradients and additional cues (SE+NG+).
Finally, for a comparison of SE to Ren and Bo’s SCG [41] on
the alternate version of NYUD we refer readers to our previous
work [14] (in the alternate setup SE likewise outperforms SCG
across all modalities while retaining its speed advantage).

11

de
pt

h
gr

ou
nd

tr
ut

h
SE

-D
SE

-R
G

B
SE

-R
G

B
D

Fig. 12. Edge detection results on the NYUD dataset. Edges from depth features (SE-D) have good precision, edges from intensity
features (SE-RGB) give better recall, and simultaneous use of intensity and depth (SE-RGBD) gives best results. For details about
visualizations of matches and errors see Figure 4; all visualizations were generated using each detector’s ODS threshold.

12

ODS OIS AP R50 FPS

NYUD / NYUD .65 .67 .65 .84 7.5
BSDS / NYUD .64 .66 .63 .83 7.5
BSDS / BSDS .75 .77 .80 .93 2.5
NYUD / BSDS .73 .74 .77 .91 2.5

TABLE 3
Cross-dataset generalization for Structured Edges.

TRAIN/TEST indicates the training/testing dataset used.

5.5 Cross dataset generalization

To study the ability of our approach to generalize across
datasets we ran a final set of experiments. In Table 3 we show
results on NYUD using structured forests trained on BSDS
and also results on BSDS using structured forests trained
on NYUD. For these experiments we use intensity images
only. Note that images in the BSDS and NYUD datasets are
qualitatively quite different, see Figure 3 and 12, respectively.

Table 3, top, compares results on NYUD of the NYUD
and BSDS trained models. Across all performance measure,
scores degrade by about 1 point when using the BSDS dataset
for training. Precision/recall curves on NYUD for the NYUD
model (SE-RGB) and the BSDS model (SE-BSDS) are shown
in Figure 10. The resulting curves align closely. The minor
performance change is surprising given the different statistics
of the datasets. Results on BSDS of the BSDS and NYUD
models, shown in Table 3, bottom, are likewise similar.

These experiments provide strong evidence that our ap-
proach could serve as a general purpose edge detector without
the necessity of retraining. We expect this to be a critical aspect
of our detector allowing for its widespread applicability.

6 DISCUSSION

Our approach is capable of realtime frame rates while achiev-
ing state-of-the-art accuracy. This may enable new applications
that require high-quality edge detection and efficiency. For
instance, our approach may be well suited for video segmen-
tation or for time sensitive object recognition tasks such as
pedestrian detection.

Our approach to learning structured decision trees may be
applied to a variety of problems. The fast and direct inference
procedure is ideal for applications requiring computational
efficiency. Given that many vision applications contain struc-
tured data, there is significant potential for structured forests
in other applications.

In conclusion, we propose a structured learning approach
to edge detection. We describe a general purpose method for
learning structured random decision forest that robustly uses
structured labels to select splits in the trees. We demonstrate
state-of-the-art accuracies on two edge detection datasets,
while being orders of magnitude faster than most competing
state-of-the-art methods.

Source code is available online.

REFERENCES
[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and

hierarchical image segmentation. PAMI, 33, 2011. 1, 2, 4, 6, 7, 9, 10
[2] P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik.

Multiscale combinatorial grouping. In CVPR, 2014. 1, 9
[3] M. Blaschko and C. Lampert. Learning to localize objects with

structured output regression. In ECCV, 2008. 2
[4] K. Bowyer, C. Kranenburg, and S. Dougherty. Edge detector evaluation

using empirical roc curves. Computer Vision and Image Understanding,
84(1):77–103, 2001. 2

[5] L. Breiman. Random forests. Machine Learning, 45(1):5–32, Oct. 2001.
2, 3

[6] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classiffication
and Regression Trees. Chapman and Hall/CRC, 1984. 2, 3

[7] J. Canny. A computational approach to edge detection. PAMI, 8(6):679–
698, November 1986. 1, 2, 7

[8] B. Catanzaro, B.-Y. Su, N. Sundaram, Y. Lee, M. Murphy, and
K. Keutzer. Efficient, high-quality image contour detection. In ICCV,
2009. 2, 9

[9] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature
space analysis. PAMI, 24:603–619, 2002. 9

[10] T. Cour, F. Benezit, and J. Shi. Spectral segmentation with multiscale
graph decomposition. In CVPR, 2005. 9

[11] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified
framework for classification, regression, density estimation, manifold
learning and semi-supervised learning. Foundations and Trends in
Computer Graphics and Vision, 7(2-3), February 2012. 2, 3, 4

[12] P. Dollár, S. Belongie, and P. Perona. The fastest pedestrian detector in
the west. In BMVC, 2010. 5

[13] P. Dollár, Z. Tu, and S. Belongie. Supervised learning of edges and
object boundaries. In CVPR, 2006. 1, 2, 9

[14] P. Dollár and C. L. Zitnick. Structured forests for fast edge detection.
In ICCV, 2013. 2, 7, 10

[15] R. O. Duda, P. E. Hart, et al. Pattern classification and scene analysis,
volume 3. Wiley New York, 1973. 1, 2

[16] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image
segmentation. IJCV, 59(2):167–181, 2004. 9

[17] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of adjacent
contour segments for object detection. PAMI, 30(1):36–51, 2008. 1

[18] J. R. Fram and E. S. Deutsch. On the quantitative evaluation of edge
detection schemes and their comparison with human performance. IEEE
TOC, 100(6), 1975. 1, 2

[19] W. T. Freeman and E. H. Adelson. The design and use of steerable
filters. PAMI, 13:891–906, 1991. 1, 2

[20] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees.
Machine Learn, 63(1):3–42, Apr. 2006. 2, 3

[21] S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization and
recognition of indoor scenes from RGB-D images. In CVPR, 2013.
1, 10

[22] S. Gupta, R. Girshick, P. Arbelaez, and J. Malik. Learning rich features
from RGB-D images for object detection and segmentation. In ECCV,
2014. 10

[23] R. Hidayat and R. Green. Real-time texture boundary detection from
ridges in the standard deviation space. In BMVC, 2009. 9

[24] T. K. Ho. The random subspace method for constructing decision forests.
PAMI, 20(8):832–844, 1998. 3

[25] I. T. Joliffe. Principal Component Analysis. Springer-Verlag, 1986. 4
[26] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.

IJCV, 1(4):321–331, 1988. 1
[27] J. J. Kivinen, C. K. Williams, and N. Heess. Visual boundary prediction:

A deep neural prediction network and quality dissection. In AISTATS,
2014. 1, 2, 9

[28] I. Kokkinos. Boundary detection using f-measure-, filter- and feature-
(F3) boost. In ECCV, 2010. 2

[29] P. Kontschieder, S. Bulo, H. Bischof, and M. Pelillo. Structured class-
labels in random forests for semantic image labelling. In ICCV, 2011.
1, 2, 3, 4

[30] M. Leordeanu, R. Sukthankar, and C. Sminchisescu. Generalized
boundaries from multiple image interpretations. PAMI, 2014. 2, 9

[31] J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A learned mid-level
representation for contour and object detection. In CVPR, 2013. 1, 2,
4, 5, 6, 9

[32] J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. Ponce. Discrimi-
native sparse image models for class-specific edge detection and image
interpretation. In ECCV, 2008. 2

[33] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis
for image segmentation. IJCV, 43, 2001. 1

[34] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image
boundaries using local brightness, color, and texture cues. PAMI,
26(5):530–549, 2004. 1, 2

13

[35] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics. In ICCV, 2001. 7

[36] S. Nowozin and C. H. Lampert. Structured learning and prediction in
computer vision. Foundations and Trends in Computer Graphics and
Vision, 6:185–365, 2011. 1, 2

[37] P. Perona and J. Malik. Scale-space and edge detection using anisotropic
diffusion. PAMI, 12(7):629–639, 1990. 2

[38] X. Ren. Multi-scale improves boundary detection in natural images. In
ICCV, 2008. 5

[39] X. Ren, C. Fowlkes, and J. Malik. Scale-invariant contour completion
using cond. random fields. In ICCV, 2005. 1

[40] X. Ren, C. Fowlkes, and J. Malik. Figure/ground assignment in natural
images. In ECCV, 2006. 1, 2

[41] X. Ren and B. Liefeng. Discriminatively trained sparse code gradients
for contour detection. In NIPS, 2012. 1, 2, 6, 9, 10

[42] Z. Ren and G. Shakhnarovich. Image segmentation by cascaded region
agglomeration. In CVPR, 2013. 9

[43] G. S. Robinson. Color edge detection. Optical Engineering, 16(5), 1977.
1

[44] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation
and support inference from rgbd images. In ECCV, 2012. 1, 4, 7, 10

[45] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning
structured prediction models: a large margin approach. In ICML, 2005.
2

[46] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Learning for
interdependent and structured output spaces. In ICML, 2004. 2

[47] S. Ullman and R. Basri. Recognition by linear combinations of models.
PAMI, 13(10), 1991. 1

[48] N. Widynski and M. Mignotte. A particle filter framework for contour
detection. In ECCV, 2012. 2

[49] S. Zheng, Z. Tu, and A. Yuille. Detecting object boundaries using low-,
mid-, and high-level information. In CVPR, 2007. 1, 2

[50] D. Ziou, S. Tabbone, et al. Edge detection techniques-an overview.
Pattern Recognition and Image Analysis, 8:537–559, 1998. 1, 2

Piotr Dollár received his masters in computer
science from Harvard University in 2002 and his
PhD from the University of California, San Diego
in 2007. He joined the Computational Vision lab
at Caltech as a postdoctoral fellow in 2007. Upon
being promoted to senior postdoctoral fellow he
realized it time to move on, and in 2011, he
joined Microsoft Research. In 2014 he became
a member of Facebook AI Research (FAIR),
where he currently resides. He has worked
on object detection, pose estimation, boundary

learning and behavior recognition. His general interests lie in machine
learning and pattern recognition and their application to computer vision.

C. Lawrence Zitnick is a senior researcher in
the Interactive Visual Media group at Microsoft
Research, and is an affiliate associate professor
at the University of Washington. He is interested
in a broad range of topics related to visual
object recognition. His current interests include
object detection and semantically interpreting vi-
sual scenes. He developed the PhotoDNA tech-
nology used by Microsoft, Facebook and vari-
ous law enforcement agencies to combat illegal
imagery on the web. Previous research topics

include computational photography, stereo vision, and image-based
rendering. Before joining MSR, he received the PhD degree in robotics
from Carnegie Mellon University in 2003. In 1996, he co-invented one of
the first commercial portable depth cameras.

