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Brain Anatomical Structure Segmentation by Hybrid
Discriminative/Generative Models

Zhuowen Tu, Katherine L. Narr, Piotr Dollár, Ivo Dinov, Paul M. Thompson, and Arthur W. Toga*

Abstract—In this paper, a hybrid discriminative/generative
model for brain anatomical structure segmentation is proposed.
The learning aspect of the approach is emphasized. In the dis-
criminative appearance models, various cues such as intensity
and curvatures are combined to locally capture the complex
appearances of different anatomical structures. A probabilistic
boosting tree (PBT) framework is adopted to learn multiclass
discriminative models that combine hundreds of features across
different scales. On the generative model side, both global and
local shape models are used to capture the shape information
about each anatomical structure. The parameters to combine the
discriminative appearance and generative shape models are also
automatically learned. Thus, low-level and high-level information
is learned and integrated in a hybrid model. Segmentations are
obtained by minimizing an energy function associated with the
proposed hybrid model. Finally, a grid-face structure is designed
to explicitly represent the 3-D region topology. This representa-
tion handles an arbitrary number of regions and facilitates fast
surface evolution. Our system was trained and tested on a set of
3-D magnetic resonance imaging (MRI) volumes and the results
obtained are encouraging.

Index Terms—Brain anatomical structures, discriminative
models, generative models, probabilistic boosting tree (PBT),
segmentation.

I. INTRODUCTION

SEGMENTING subcortical structures from 3-D brain im-
ages is of significant practical importance, for example in

detecting abnormal brain patterns [1], studying various brain
diseases [2] and studying brain growth [3]. Fig. 1 shows an
example 3-D magnetic resonance imaging (MRI) brain volume
and subcortical structures delineated by a neuroanatomist.
This subcortical structure segmentation task is very impor-
tant but difficult to do even by hand. The various anatomical
structures have similar intensity patterns (see Fig. 2) making
these structures difficult to separate based solely on intensity.
Furthermore, often there is no clear boundary between the
regions. Neuroanatomists often develop and use complicated
protocols [2] in guiding the manual delineation process and
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Fig. 1. Illustration of an example 3-D MRI volume. (a) Example MRI volume
with skull stripped. (b) Manually annotated subcortical structures. The goal of
this work is to design a system that can automatically create such annotations.

Fig. 2. Intensity histograms of the eight subcortical structures targeted in this
paper and of the background regions. Note the high degree of overlap between
their intensity distributions, which makes these structures difficult to separate
based solely on intensity.

those protocols may vary from task to task. A considerable
amount of work is required to fully delineate even a single 3-D
brain volume. Designing algorithms to automatically segment
brain volumes is challenging in that it is difficult to transfer
such protocols into sound mathematical models or frameworks.

In this paper, we use a mathematical model for subcortical
segmentation that includes both the appearance (voxel intensi-
ties) and shape (geometry) of each subcortical region. We use a
discriminative approach to model appearance and a generative
model to describe shape, and learn and combine them in a prin-
cipled manner.

We apply our system to the segmentation of eight subcortical
structures, namely: the left hippocampus (LH), the right hip-
pocampus (RH), the left caudate (LC), the right caudate (RC),
the left putamen (LP), the right putamen (RP), the left ventricle
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TABLE I
COMPARISON OF DIFFERENT 3-D SEGMENTATION ALGORITHMS. NOTE THAT ONLY OUR WORK COMBINES A STRONG GENERATIVE SHAPE MODEL

WITH A DISCRIMINATIVE APPEARANCE MODEL. IN THE ABOVE, SVM REFERS TO SUPPORT VECTOR MACHINE

(LV), and the right ventricle (RV). We obtained encouraging re-
sults. It is worth mentioning that our system is very adaptive and
can be directly used to segment other/more structures.

A. Related Work

There has been considerable recent work on 3-D segmen-
tation in medical imaging and some representatives include
[4]–[7], [15], [16]. Two systems particularly related to our
approach are Fischl et al. [4] and Yang et al. [5], with which
we will compare results. The 3-D segmentation problem is
usually tackled in a maximize a posterior (MAP) framework
in which both appearance models and shape priors are defined.
Often, either a generative or a discriminative model is used
for the appearance model, while the shape models are mostly
generative based on either local or global geometry. Once an
overall target function is defined, different methods are then
applied to find the optimal segmentation.

Related work can be classified into two broad categories:
methods that rely primarily on strong shape models and
methods that rely more on strong appearance models. Table I
compares some representative algorithms (this is not a complete
list) for 3-D segmentation based on their appearance models,
shape models, inference methods, and specific applications (we
give detailed descriptions below).

The first class of methods, including [4]–[8], rely on strong
generative shape models to perform 3-D segmentation. For the
appearance models, each of these methods assumes that the
voxels are drawn from independent and identically-distributed
(i.i.d.) Gaussians distributions. Fischl et al. [4] proposed a
system for whole brain segmentation using Markov random
fields (MRFs) to impose spatial constraints for the voxels of
different anatomical structures. In Yang et al. [5], joint shape
priors are defined for different objects to prevent surfaces from
intersecting each other, and a variational method is applied to a
level set representation to obtain segmentations. Pohl et al. [6]
used an expectation maximization (EM) type algorithm again
with shape priors to perform segmentation. Pizer et al. [7]
used a statistical shape representation, M-rep, in modeling 3-D
objects. Woolrich and Behrens [8] used a Markov chain Monte
Carlo (MCMC) algorithm for functional magnetic resonance
imaging (fMRI) segmentation. The primary drawback to all of
these methods is that the assumption that voxel intensities can
be modeled via i.i.d. models is not realistic (again see Fig. 2).

The second class of methods for 3-D segmentation, including
[9], [10], [12]–[14], [17], [18] rely on strong discriminative

appearance models. These methods either do not explicitly use
shape model or only rely on very simple geometric constraints.
For example, atlas-based approaches [10], [17] combined
different atlases to perform voxel classification, requiring
atlas based registration and subsequently making use of shape
information implicitly. Li et al. [9] used a rule based algorithm
to perform classification on each voxel. Lao et al. [12] adopted
support vector machines (SVMs) to combine a small number
of cues for performing brain tissue segmentation, but no shape
model is used. The classification model used in Lee et al. [13]
is based on the properties of extracted objects. All these ap-
proaches share two major problems: 1) as already stated, there
is no global shape model to capture overall shape regularity;
2) the features used are limited (unlike the thousands used in
this paper) and often require specific design.

In other areas, conditional random fields (CRFs) models [19]
use discriminative models to provide context information. How-
ever, inference is not easy in CRFs, and they also have difficul-
ties capturing global shape. A hybrid model is used in Raina et
al. [20], however it differs from the hybrid model proposed here
in that discriminative models were used only to learn weights for
the different generative models.

Finally, our approach bears some similarity with [14] where
the goal is foreground/background segmentation for virtual
colonoscopy. The major differences between the two methods
are: 1) there is no explicit high-level generative model defined
in [14], nor is there a concept of a hybrid model and 2) here
we deal with eight subcortical structures, which results in a
multiclass segmentation and classification problem.

B. Proposed Approach

In this paper, a hybrid discriminative/generative model for
brain subcortical structure segmentation is presented. The nov-
elty of this work lies in the principled combination of a strong
discriminative appearance model and a generative shape model.
Furthermore, the learning aspect of this research provides cer-
tain advantages for this problem.

Generative models capture the underlying image generation
process and have certain desirable properties, such as requiring
small amounts of training data; however, they can be difficult
to design and learn, especially for complex objects with inho-
mogeneous textures. Discriminative models are easier to train
and apply and can accurately capture local appearance varia-
tions; however, they are not easily adapted to capture global
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shape information. Thus, a hybrid discriminative/generative ap-
proach for modeling appearance and shape is quite natural as the
two approaches have complementary strengths, although prop-
erly combining them is not trivial.

For appearance modeling, we train a discriminative model
and use it to compute the probability that a voxel belongs to
a given subcortical region based on properties of its local neigh-
borhood. A probabilistic boosting tree (PBT) framework [21]
is adopted to learn a multiclass discriminative model that auto-
matically combines many features such as intensities, gradients,
curvatures, and locations across different scales. The advantage
of low-level learning is twofold. 1) Training and testing the clas-
sifier are simple and fast and there are few parameters to tune,
which also makes the system readily transferable to other do-
mains. 2) The robustness of a learning approach is largely de-
cided by the availability of a large amount of training data, how-
ever, even a single brain volume provides a vast amount of data
since each cubic window centered on a voxel provides a training
instance. We attempt to make the low-level learning as robust as
possible, although ultimately some of the ambiguity caused by
similar appearance of different subcortical regions cannot be re-
solved without engaging global shape information.

We explicitly engage global shape information to enforce the
connectivity of each subcortical structure and its shape regu-
larity through the use of a generative model. Specifically, we
use principal component analysis (PCA) [22], [23] in addition to
local smoothness constraints. This model is well-suited since it
can be learned with only a small number of region shapes avail-
able during training and can be used to represent global shape.
It is worth to mention that 3-D shape modeling is still a very
active area in medical imaging and computer vision. We use a
simple PCA model in the hybrid model to illustrate the useful-
ness of engaging global shape information. One may adopt other
approaches, e.g., m-rep [7].

Finally, the parameters to combine the discriminative appear-
ance and generative shape models are also learned. Through the
use of our hybrid model, low-level and high-level information
is learned and integrated into a unified system.

After the system is trained, we can obtain segmentations by
minimizing an energy function associated with the proposed hy-
brid model. A grid-face representation is designed to handle an
arbitrary number of regions and explicitly represent the region
topology in 3-D. The representation allows efficient trace of the
region surface points and patches, and facilitates fast surface
evolution. Overall, our system takes about 8 min to segment a
volume.

This paper is organized as follows. Section II gives the
formulation of brain anatomical structure segmentation and
shows the hybrid discriminative/generative models. Procedures
to learn the discriminative and generative models are discussed
in Sections III-A and III-B, respectively. We show the grid-face
representation and a variational approach to performing seg-
mentation in Section IV. Experiments are shown in Section V
and we conclude in Section VI.

II. PROBLEM FORMULATION

In this section, the problem formulation for 3-D brain seg-
mentation is presented. The discussion begins from an ideal

model and shows that the hybrid discriminative/generative
model is an approximation to it.

A. An Ideal Model

The goal of this work is to recover the anatomical structure
of the brain from a registered 3-D input volume . Specifically,
we aim to label each voxel in as belonging to one of the eight
subcortical regions targeted in this work or to a background re-
gion. A segmentation of the brain can be written as

(1)

where is the background region and are the eight
anatomical regions of interest. We require that in-
cludes every voxel position in the volume and that ,

, i.e., that the regions are nonintersecting. Equivalently,
regions can be represented by their surfaces since each represen-
tation can always be derived from the other. We write to
denote the voxel values of region .

The optimal can be inferred in the Bayesian framework

(2)

Solving for requires full knowledge about the complex ap-
pearance models of the foreground and background,
and their shapes and configurations . Even if we assume
each region is independent and can model the
appearances of region , still requires
accurate shape prior. To make the system tractable, we need to
make additional assumptions about the form of and

.

B. Hybrid Discriminative/Generative Model

Intuitively, the decision of how to segment a brain volume
should be made jointly according to the overall shapes and ap-
pearances of the anatomical structures. Here, we introduce the
hybrid discriminative/generative model, where the appearance
of each region is modeled using a discriminative
approach and shape using a generative model. We can
approximate the posterior as

(3)

Here, is the subvolume (a cubic window) centered at voxel
, includes all the voxels in the sub-volume except ,

and is the class label for each voxel. The term
is analogous to a pseudo-likeli-

hood model [19].
We model the appearance using a discriminative model,

, computed over the subvolume
centered at voxel . To model the shape of each region

, we use PCA applied to global shapes in addition to local
smoothness constraints. We can define an energy function
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based on the negative log-likelihood of the
approximation of

(4)

The first term, , corresponds to the discriminative
probability of the joint appearances

(5)

and represent the generative shape
model and the smoothness constraint (details are given in
Section III-B). After the model is learned, we can compute an
optimal segmentation by finding the minimum of
(details are in Section IV).

As can be seen from (4), is composed of both
discriminative and generative models, and it combines the
low-level (local subvolume) and high-level (global shape)
information in an integrated hybrid model. The discriminative
model captures complex appearances as well as the local
geometry by looking at a subvolume. Based on this model, we
are no longer constrained by the homogeneous texture assump-
tion—the model implicitly takes local geometric properties and
context information into account. The generative models are
used to explicitly enforce global and local shape regularity.
and are weights that control our reliance on appearance,
shape regularity, and local smoothness; they are also learned.
Our approximate posterior is

(6)

where is the partition function. In
the next section, we discuss in detail how to learn and compute

, , , and the weights to combine them.

III. LEARNING DISCRIMINATIVE APPEARANCE AND

GENERATIVE SHAPE MODELS

This section gives details about how the discriminative ap-
pearance and generative shape models are learned and com-
puted. The learning process is carried out in a pursuit way. We
learn , , and separately, and then , and to
combine them.

A. Learning Discriminative Appearance Models

Our task is to learn and compute the discriminative ap-
pearance model , which will enable us to
compute according to (5). Each input
is a sub-volume of size , and the output is the
probability of the center voxel belonging to each of the re-
gions . This is essentially a multiclass classification
problem; however, it is not easy due to the complex appearance
pattern of . As noted previously, using only the inten-
sity value would not give good classification results (see
Fig. 2).

Often, the choice of features and the method to combine/fuse
these features are two key factors in deciding the robustness of
a classifier. Traditional classification methods in 3-D segmenta-
tion [9], [10], [12] require a great deal of human effort in feature
design and use only a very limited number of features. Thus,
these systems have difficulty classifying complex patterns and
are not easily adapted to solve problems in domains other than
that for which they were designed.

Recent progress in boosting [21], [24], [25] has greatly fa-
cilitated the process of feature selection and fusion. The Ad-
aBoost algorithm [24] can select and fuse a set of informative
features from a very large feature candidate pool (thousands or
even millions). AdaBoost is meant for two-class classification;
to deal with multiple anatomical structures we adopt the mul-
ticlass PBT framework [21], built on top of AdaBoost. PBT
has two additional advantages over other boosting algorithms:
1) PBT deals with confusing samples by a divide-and-conquer
strategy, and 2) the hierarchical structure of PBT improves the
speed of the learning/computing process. Although the theory
of AdaBoost and PBT are well established (see [21] and [24]),
to make the paper self-contained we give additional details of
AdaBoost and multiclass PBT in Sections III-A-1 and III-A-2,
respectively.

In this paper, each training sample is a
sized cube centered at voxel . For each sample, around 5000
candidate features are computed, such as intensity, gradients,
curvatures, locations, and various 3-D Haar filters [14]. Gradient
and curvature features are the standard ones and we obtain a set
of them at three different scales. Among all these 5000 candidate
features, most of them are Haar filters. A Haar filter is simply a
linear filter that can be computed very rapidly using a numerical
trick called integral volume. For each voxel in a
subvolume, we can compute a feature for each type of 3-D Haar
filters (see [14] and we use nine types) at a certain scale. Suppose
we use three scales in the , , and direction, a rough estimate
for the possible number of Haar features is ,
433 (some Haars might not be valid on the boundaries). Due to
the computational limit in training, we choose to use a subset
of them (around 4900). Therefore, these Haar filters of various
types and sizes are computed at uniformly sampled locations
in the subvolume. Dollár et al. [26] recently proposed a mining
strategy to explore a very large feature space, but this is out of
the scope of this paper. From all the possible candidate features
available during training, PBT selects and combines a relatively
small subset to form an overall strong multiclass classifier.

Fig. 6 shows the classification result on a test volume after
a PBT multiclass discriminative model is learned. As we can
see, subcortical structures are already roughly segmented out
based on the local discriminative appearance models, but we still
need to engage high-level information to enforce their geometric
regularities. In the trained classifier, the first six selected features
are: 1) coordinate of the center voxel ; 2) Haar filter of size

; 3) gradient at ; 4) Haar filter of size ;
5) coordinate of center ; 6) coordinate of center .

1) AdaBoost: To make the paper self-contained, we give a
concise review of AdaBoost [24] below. Fig. 3 illustrates the
procedure of the AdaBoost algorithm. For notational simplicity
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Fig. 3. Brief description of the AdaBoost training procedure [24].

we use to denote an input subvolume, and denote
the two-class target label using :

AdaBoost sequentially selects weak classifiers from a
candidate pool and reweights the training samples. The selected
weak classifiers are combined into a strong classifier

(7)

It has been shown that AdaBoost and its variations are asymp-
totically approaching the posterior distribution [25]

(8)

In this work, we use decision stumps as the weak classifiers.
Each decision stump corresponds to a thresholded feature

(9)

where is the th feature computed on and is a
threshold. Finding the optimal value of for a given feature
is straightforward. First, the feature is discretized (say into 30
bins), then every value of is tested and the resulting decision
stump with the smallest error is selected. Checking all the 30
possible values of can be done very efficiently using the
cumulative function on the computed feature histogram. That
way, we only need to scan the cumulative function once for the
best threshold for every feature.

2) Multiclass PBT: For completeness we also give a concise
review of multiclass PBT [21]. Training PBT is similar to
training a decision tree, except at each node a boosted clas-
sifier, here AdaBoost, is used to split the data. At each node
we turn the multiclass classification problem into a two-class
problem by assigning a pseudo-label to each sample
and then train AdaBoost using the procedure defined above.
The AdaBoost classifier is applied to split the data into two
branches, and training proceeds recursively. If classification
error is small or the maximum tree depth is exceeded, training
stops. A schematic representation of a multiclass PBT is shown
in Fig. 5, and details are given in Fig. 4.

Fig. 4. Brief description of the training procedure for PBT multiclass classifier
[21].

Fig. 5. Schematic diagram of a multi-class probabilistic boosting tree. During
training, each class is assigned with a pseudo label f�1;+1g and AdaBoost
is applied to split the data. Training proceeds recursively. PBT performs multi-
class classification in a divide-and-conquer manner.

After a PBT classifier is trained based on the procedures de-
scribed in Fig. 4, the posterior can be computed
recursively (this is an approximation). If the tree has no chil-
dren, the posterior is simply the learned empirical distribution
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Fig. 6. Classification result on a test volume. First row shows three slices of part of a volume with the left hippocampus highlighted. First image in the second
row shows a label map with each voxel assigned with the label maximizing p(yjV(N(s)). Other three figures in the second row display the soft map, p(y =
1jV(N(s)) (left hippocampus) at three typical slices. For visualization, the darker the pixel, the higher its probability. We make two observations: 1) Significant
ambiguity has already been resolved in the discriminative model and 2) explicit high-level knowledge is still required to enforce the topological regularity.

at the node . Otherwise the posterior is
defined as

(10)
Here, is the posterior of the AdaBoost classifier, and

and are the posteriors of the left
and right trees, computed recursively. We can avoid traversing
the entire tree by approximating with
if is small, and likewise for the right branch. Typically,
using this approximation, only a few paths in the tree are tra-
versed. Thus, the amount of computation to calculate is
roughly linear in the depth of the tree, and in practice can be
computed very quickly.

B. Learning Generative Shape Models

Shape analysis has been one of the most studied topics in
computer vision and medical imaging. Some typical approaches
in this domain include PCA shape models [5], [22], [23], the me-
dial axis representation [7], and spherical wavelets analysis [27].
Despite the progress made [28], the problem remains unsolved.
3-D shape analysis is very difficult for two reasons: 1) there is
no natural order of the surface points in 3-D, whereas one can
use a parametrization to represent a closed contour in 2-D, and
2) the dimension of a 3-D shape is very high.

In this paper, a simple PCA shape model is adopted based
on the signed distance function of the shape. A signed distance
map is similar to the level sets representation [29] and some ex-
isting work has shown the usefulness of building PCA models
on the level sets of objects [5]. In our hybrid models, much of
the local shape information has already been implicitly fused in
the discriminative appearance model, however, a global shape
prior helps the segmentation by introducing explicit shape in-
formation. Experimental results with and without shape prior
are shown in Table III.

Fig. 7. PCA shape model learned for the left hippocampus. Shapes of the sur-
face are shown at zero distance. Top-left figure shows the mean shape, the first
three major components are shown in the top-right and bottom-right, and three
random samples drawn from the PCA models (synthesized) are displayed in the
bottom-left.

Our global shape model is simple and general. The same pro-
cedure is used to learn the shape models for six anatomical struc-
tures, namely, the LH, RH, LC, RC, LP, and RP. We do not apply
the shape model to the background or the LV or RV. The back-
ground is too irregular, while the ventricles often have elongated
structures and their shapes are not described well by the PCA
shape models. On the other hand, ventricles tend to be quite dark
in many MRI volumes which makes the task of segmenting them
relatively easier.

The volumes are registered and each anatomical structure is
manually delineated by an expert in each of the MRI volumes,
details are given in Section V. Basically, brain volumes were
roughly aligned and linearly scaled [38]. Four control points
were manually given to perform global registration followed by
the algorithm [30] to perform nine parameter registration. In this
work volumes were used for training. Let
denote the delineated training samples for region . First,
the center of each sample is computed (subscript dropped
for convenience), and the centers for each are aligned. Next,
the signed distance map (SDM) is computed for each sample,
where has the same dimensions as the original volume and
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Fig. 8. Illustration of the grid-face representation. Left: to code the region topology, a label map is stored in which each voxel is assigned with the label of the
anatomical structure to which the voxel currently belongs. Middle: surface evolution is applied to a single slice of the volume, either along an X � Y , Y �Z , or
X �Z plane. Shown is the middle slice along theX �Y plane. Right: forces are computed using the motion equations at faceM, which lies between voxels a
and a . The sum of the forces causesM to move toM , resulting in a change of ownership of a from R to R . Top/bottom: G before and after application of
forces to moveM.

the value of is the signed distance of the voxel to the
surface of .

We apply PCA to . Let be the the mean SDM,
and Q be a matrix with each column being a vectorized sample

. We compute its singular value decomposition
. Now, the PCA coefficient of (here we drop the super-

script for convenience) are given by its projection
, and the corresponding probability of the shape according to

the Gaussian model is

(11)

Note that training shapes is very limited compared to the
enormously large space in which all possible 3-D shapes may
appear. We keep the components of whose corresponding
eigenvalues are bigger than a certain threshold; in the experi-
ments we found that setting the threshold such that 12 compo-
nents are kept gives good results. Finally, note that a shape may
be very different from the training samples but can still have a
large probability since the probability is computed based on its
projection onto the PCA space. Therefore, we add a reconstruc-
tion term to penalize unfamiliar shape: ,
where is the identity matrix. The second energy term in (4)
becomes

(12)

Fig. 7 shows a PCA shape model learned for the left hip-
pocampus; it roughly captures the global shape regularity for
the anatomical structures. Table III shows some experimental
results with and without the PCA shape models, and we see im-
provements in the segmentations with the shape models. To fur-
ther test the importance of the term , we initialize our algo-
rithm from the ground truth segmentation and then perform sur-
face evolution based on shape only; we show results in Table III
and Fig. 10. Due to the limited number of training samples and
the properties of the PCA shape model itself, results are far from
perfect. Learning a better shape model is one of our future re-
search directions.

The term enforces the global shape regularity for
each anatomical structure. Another energy term is added to
encourage smooth surfaces:

(13)

where is the area of the surface of region . When
the total energy is being minimized in a variational approach
[31], [32], this term corresponds to the force that encourages
each boundary point to have small mean curvature, resulting in
smooth surfaces (see Appendix for the details).

C. Learning to Combine the Models

Once we have learned , , and , we learn the
optimal weights and to combine them. For any choice of

and , for each volume in the training set we can use the
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energy minimization approach from Section IV to compute the
minimal solution of . Different choices
of and will result in different segmentations, the idea
is to pick the weights so that the segmentations of the training
volumes are as good as possible.

Let measure the similarity between the
segmentation result under the current and the ground
truth on volume . In this paper, we use precision-recall
[33] to measure the similarity between two segmentations.
One can adopt other approaches, e.g., Hausdorff distance [28],
depending upon the emphasis on the errors. Our goal is to
minimize

(14)

We solve for and using a steepest descent algorithm so
that the segmentation results for all the training volumes are as
close as possible to the ground truth.

IV. SEGMENTATION ALGORITHM

In Section II, we defined and in Section III we
showed how to learn the shape and appearance models and how
to combine them into our hybrid model. These were the mod-
eling problems, we now turn to the computing issue, specifi-
cally, how to infer the optimal segmentation which minimizes
the energy (4) given a novel volume . We begin by intro-
ducing the motion equations used to perform surface evolution
for segmenting subcortical structures. Next we discuss an ex-
plicit topology representation and then show how to use it to
perform surface evolution. We end this section with an outline
of the overall algorithm.

A. Motion Equations

The goal in the inference/computing stage is to find the op-
timal segmentation which minimizes the energy in (4). In our
problem, the number of anatomical structures is known, as are
their approximate positions. Therefore, we can apply a varia-
tional method to perform energy minimization. We adopt a sur-
face evolution method [34] to perform surface evolution to min-
imize the energy in (4). The original surface evolution
method is in 2-D, here we give the extended motion equations
for , , and in 3-D. For more background infor-
mation we refer readers to [31] and [34]. Here, we give the mo-
tion equations for the continuous case, derivations are given in
the Appendix.

Let be a surface point between region and . We
can compute the effect of moving on the overall energy by
computing , and . We begin
with the appearance term

(15)

where is the surface normal direction at . Moving in the
direction of the gradient allows each voxel to better

fit the output of the discriminative model. Effect on the global
shape model is

(16)

and are the Jacobian matrices for the signed
distance map for and respectively. Finally, the motion
equation derived from the smoothness term is

(17)

where is the curvature at .
Equation (15) contributes to the force in moving the boundary

to better fit the classification model, (16) contributes to the force
to fit the global shape model, and (17) favors small curvature
resulting in smoother surfaces. The final segmentation is a result
of balancing each of the above forces: 1) each region should
contain voxels that match its appearance model ,
2) the overall shape of each anatomical structure should have
high probability, and 3) the surfaces should be locally smooth.
Results using different combinations of these terms are shown
in Fig. 10 and Table III.

B. Grid-Face Representation

In order to apply the motion equations to perform surface
evolution, an explicit representation of the regions in neces-
sary. 3-D shape representation is a challenging problem. Some
popular methods include parametric representations [35] and fi-
nite element representations [6]. The joint priors defined in [5]
are used to prevent the surfaces of different objects from inter-
secting with each other in the level set representation. The level
set method [29] implicitly handles region topology changes,
and has been widely used in image segmentation. However,
the subcortical structures in 3-D brain images are often topo-
logically connected, which introduces difficulty in the level set
implementation.

In this paper, we propose a grid-face representation to explic-
itly code the region topology. We take advantage of the partic-
ular form of our problem: we are dealing with a fixed number
of topologically connected regions that are nonoverlapping and
together include every voxel in the volume. Recall from (1) that
we can represent a segmentation as , where
each stores which voxels belong to region . If we think of
each voxel as a cube, then the boundary between two adjacent
voxels is a square, or face. The grid-face representation of a
segmentation is the set of all faces whose adjacent voxels
belong to different regions. It is worth mentioning that although
the shape prior is defined by a PCA model for each structure sep-
arately, the actual region topology is maintained by the grid-face
representation, which is a full partition of the lattice. Therefore,
regions will not overlap to each other.

The resulting representation is conceptually simple and facili-
tates fast surface evolution. It can represent an arbitrary number
of regions and maintains a full partition of the input volume.
By construction, regions may be adjacent but cannot overlap.
Fig. 8 shows an example of the representation; it bears some
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TABLE II
PRECISION AND RECALL MEASURES FOR THE RESULTS ON THE TRAINING AND

TEST VOLUMES. TEST ERROR IS ONLY SLIGHTLY WORSE THAN THE TRAINING

ERROR, WHICH SAYS THAT THE ALGORITHM GENERALIZES WELL. WE ALSO

TEST THE SAME SET OF VOLUMES USING FREESURFER [4], OUR RESULTS ARE

SLIGHTLY BETTER. (a) RESULTS ON THE TRAINING DATA; (b) RESULTS ON

TEST DATA; (c) RESULTS ON THE TEST DATA BY FREESURFER [4]

similarity with [36]. It has some limitations, for example sub-
voxel precision cannot be achieved. However, this does not seem
to be of critical importance in 3-D brain images, and the smooth-
ness term in the total energy prevents the surface from being too
jagged.

C. Surface Evolution

Applying the motion equations to the grid-face representa-
tion is straightforward. The motion equations are defined for
every point on the boundary between two regions, and in our
representation, each face in is a boundary point. Let and
be two adjacent voxels belonging to two different regions, and

the face between them. Each of the forces works along the
surface normal . If the magnitude of the total force is bigger
than 1, the face may move 1 voxel to the other side of either

or , resulting in the change of the ownership of the cor-
responding voxel. The move is allowed so long as it does not
result in a region becoming disconnected. Fig. 8 illustrates an
example of a boundary point moving 1 voxel.

To perform surface evolution, we visit each face in turn,
apply the motion equations and update accordingly. Specifi-
cally, we take a 2-D slice of the 3-D volume along an ,

, or plane, and then perform one move on each of
the boundary points in the slice. Essentially, the problem of 3-D
surface evolution is reduced to boundary evolution in 2-D, see
Fig. 8. During a single iteration, each 2-D slice of the volume
is visited once; we perform a number of such iterations, either
until does not change or a maximum number of iterations is
reached.

D. Outline of the Algorithm

Training

1) For a set of training volumes with the anatomical
structures manually delineated, train multiclass PBT to
learn the discriminative model , as described
in Section III-A.

2) For each anatomical structure learn its PCA shape model,
as discussed in Section III-B

TABLE III
RESULTS ON THE TEST DATA USING DIFFERENT COMBINATIONS OF THE

ENERGY TERMS IN (4). NOTE THAT THE RESULTS OBTAINED USING E

ARE INITIALIZED FROM GROUND TRUTH. (a) RESULTS USING E ONLY;
(b) RESULTS USING E + E ONLY; (c) RESULTS USING E ONLY,

WITH INITIALIZATION FROM GROUND TRUTH

3) Learn and to combine the discriminative and
generative models, as described in Section III-C.

Segmentation

1) Given an input volume , compute for
each voxel .

2) Assign each voxel in with the label that maximizes
. Based on this classification map, we use a

simple morphological operator to find all the connected
regions. In each individual region, all the voxels are
six-neighborhood connected and they have the same label.
Note that at this stage two disjoint regions may have
the same label. For all the regions with the same label
(except 0), we only keep the biggest one and assign the
rest to the background. Therefore, we obtain an initial
segmentation in which all eight anatomical structures
are topologically connected.

3) Compute the initial grid-face representation based
on , as described in Section IV-B. Perform surface
evolution as described in Section IV-C to minimize the
total energy in (4).

4) Report the final segmentation result .

V. EXPERIMENTS

High-resolution 3-D SPGR T1-weighted MR images were
acquired on a GE Signa 1.5T scanner as a series of 124 con-
tiguous 1.5-mm coronal slices (256 256 matrix; 20 cm
field-of-view). Brain volumes were roughly aligned and lin-
early scaled (Talairach and Tournoux 1988). Four control points
were manually given to perform global registration followed by
the algorithm [30] to perform nine parameter registration. This
procedure is used to correct for differences in head position and
orientation and places data in a common coordinate space that
is specifically used for interindividual and group comparisons.
All the volumes shown in the paper are registered using the
above procedure.

Our dataset includes 28 volumes annotated by neu-
roanatomists. The volumes were split in half randomly, 14
volumes were used for training and 14 for testing. The training
and testing processes was repeated twice and we observed the
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Fig. 9. Results on a test volume with the segmentation algorithm initialized with small seed regions. The algorithm quickly converges to the final result. The
final segmentation are nearly the identical result as those shown in Fig. 10, where the initial segmentations were obtained based on the classification result of the
discriminative model. This validates the hybrid discriminative/generative models and it also demonstrates the robustness of our algorithm.

same performances. The training volumes together with the an-
notations are used to train the discriminative model introduced
in Section III-A and the generative shape model discussed
in Section III-B. After, we apply the algorithm described in
Section IV to segment the eight anatomical structures in each
volume. Computing the discriminative appearance model is
fast (a few minutes per volume) due to hierarchical structure
of PBT and the use of integral volume. It takes an additional 5
min to perform surface evolution to obtain the segmentation,
for a total of 8 min per volume.

Results on a test volume are shown in Fig. 10, along with the
corresponding manual annotation. Qualitatively, the anatomical
structures are segmented correctly in most places, although not
all the surfaces are precisely located. The results obtained by our
algorithm are more regular (less jagged) than human labels. The
results on the training volumes (not shown) are slightly better
than those on the test volumes, but the differences are not large.

To quantitatively measure the effectiveness of our algorithm,
errors are measured using several popular criteria, including
Precision-Recall [33], Mean distance [5], and Hausdorff dis-
tance [28]. Let be the set of voxels annotated by an expert
and be the voxels segmented by the algorithm. These three
error criteria are defined, respectively, as

(18)

(19)

(20)

TABLE IV
(a), (b) HAUSDORFF DISTANCES FOR THE RESULTS ON THE TRAINING AND TEST

VOLUMES; THE MEASURE IS IN TERMS OF VOXELS. (c), (d) MEAN DISTANCE

MEASURES FOR THE RESULTS ON THE TRAINING AND TEST VOLUMES.
(a) RESULTS ON TRAINING DATA MEASURED USING HAUSDORFF DISTANCE;

(b) RESULTS ON TEST DATA MEASURED USING HAUSDORFF DISTANCE;
(c) RESULTS ON TRAINING DATA MEASURED USING MEAN DISTANCE;

(d) RESULTS ON TEST DATA MEASURED USING MEAN DISTANCE

In the definition of , denotes the union of all disks with
radius centered at a point in . Finally, note that is an
asymmetric measure.
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Fig. 10. Results on a typical test volume. Three planes are shown overlayed with the boundaries of the segmented anatomical structures. First row shows results
manually labeled by an expert. Second row displays the result of using only the E energy term. Third row shows the result of using E and E . The result
in the fourth was obtained by initializing the algorithm from the ground truth and using E only. The result of our overall algorithm is displayed in the fifth
row. The last row shows the result obtained using FreeSurfer [4].

Table II shows the precision-recall measure [33] on the
training and test volumes for each of the eight anatomical
structures, as well as the overall average precision and recall.
The test error is slightly worse than the training error, but again

the differences are not large. To directly compare our algorithm
to an existing state-of-art method, we tested the MRI data
using FreeSurfer [4], and our results are slightly better. We
also show segmentation results by FreeSurfer in the last row of
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Fig. 10; since FreeSurfer uses MRF and lacks explicit shape
information, the segmentation results were more jagged. Note
that FreeSurfer segments more subcortical structures than our
algorithm, and we only compare the results on those discussed
in this paper.

Table IV shows the Hausdorff and Mean distances between
the segmented anatomical structures and the manual annota-
tions on both the training and test sets; smaller distances are
better. The various error measure are quite consistent—the hip-
pocampus and putamen are among the hardest to accurately seg-
ment while the ventricles are fairly easy due to their distinct ap-
pearance. For the asymmetric Hausdorff distance we show both

and . For the Mean distance we give the
standard deviation, which was also reported in [5]. On the same
task, Yang et al. [5] reported a mean error of 1.8 and a variation
of 1.2, however, the results are not directly comparable because
the datasets are different and their error was computed using the
leave-one-out method with 12 volumes in total. Finally, we note
that the running time of our algorithm, approximately 8 min, is
20–30 times faster then theirs (which takes a couple of hours
per volume). The speed advantage of our algorithm is due to: 1)
efficient computation of the discriminative model using a tree
structure, 2) fast feature computation based on integral volumes,
and 3) variational approach of surface evolution on the grid-face
representation.

To demonstrate how each energy term in (4) affects the
quality of the final segmentation, we also test our algorithm
using only, and , and . To be able to test
using shape only, we initialize the segmentation to the ground
truth and then perform surface evolution based on the
term only. Although imperfect, this procedure allows us to
see whether on its own is doing something reasonable.
Results can be seen in the second, third, and forth row in Fig. 10
and we report precision and recall in Table III. We make the
following observations. 1) The subcortical structures can be
segmented fairly accurately using only. This shows a
sophisticated model of appearance can provide significant in-
formation for segmentation. 2) The surfaces are much smoother
by adding the on the top of , and we also see im-
proved results in terms of errors. 3) The PCA models are able to
roughly capture the global shapes of the subcortical structures,
but only improve the overall error slightly. 4) The best set of
results are obtained by including all three energy terms.

We also asked an independent expert trained on annotating
subcortical structures to rank these different approaches based
on the segmentation results. The ranking from the best to
the worst are, respectively, Manual, , , ,
FreeSurfer, . This echoes the error measures obtained in
Tables II and III.

As stated in Section IV-D, we start the 3-D surface evolu-
tion from an initial segmentation based on the discriminative
appearance model. To test the robustness of our algorithm, we
also started the method from the small seed regions shown in
Fig. 9. Several steps in the surface evolution process are shown.
The algorithm quickly converges to nearly the identical result,
as shown in Fig. 10, even though it was initialized very differ-
ently. This demonstrates that our approach is robust and the final
result does not depend heavily on the initial segmentation. The
algorithm does, however, converge faster if it starts from a good
initial state.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a system for brain anatomical
structure segmentation using hybrid discriminative/generative
models. The algorithm is very general, and easy to train and
test. It has very few parameters that need manual specification
(only a couple of generic ones in training PBT, e.g., the depth
of the tree), and it is quite fast—taking on the order of minutes
to process an input 3-D volume.

We evaluate our algorithm both quantitatively and qualita-
tively, and the results are encouraging. A comparison between
our algorithm using different combinations of the energy terms
and FreeSurfer is given. Compared to FreeSurfer, our system is
much faster and the results obtained are slightly better. How-
ever, FreeSurfer is able to segment more subcortical structures.
A full scale comparison with other existing state-of-art algo-
rithms needs to be done in the future.

We emphasize the learning aspect of our approach for in-
tegrating the discriminative appearance and generative shape
models closely. The system makes use of training data anno-
tated by experts and learns the rules implicitly from examples.
A PBT framework is adopted to learn a multiclass discrimina-
tive appearance model. It is up to the learning algorithm to auto-
matically select and combine hundreds of cues such as intensity,
gradients, curvatures, and locations to model ambiguous appear-
ance patterns of the different anatomical structures. We show
that pushing the low-level (bottom-up) learning helps resolve a
large amount of ambiguity, and engaging the generative shape
models further improves the results slightly. Discriminative and
generative models are naturally combined in our learning frame-
work. We observe that: 1) the discriminative model plays the
major role in obtaining good segmentations; 2) the smoothness
term further improves the segmentation; and 3) the global shape
model further constrains the shapes but improves results only
slightly.

We hope to improve our system further. We anticipate that the
results can be improved by: 1) using more effective shape priors,
2) learning discriminative models from a bigger and more infor-
mative feature pool, and 3) introducing an explicit energy term
for the boundary fields.

APPENDIX

DERIVATION OF MOTION EQUATIONS

Here, we give detailed proofs for the motion equations
[(15) and (17)]. For notational clarity, we write the equations
in the continuous domain, and their numerical implemen-
tations are just approximations in a discretized space. Let

be a 3-D boundary point, and
let be a region and its corresponding surface.

Motion Equation for : The discriminative model for
each region is

(21)

as given in (5). A derivation of the motion equation in the 2-D
case, based on Green’s theorem and Euler-Lagrange equation,
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can be found in [34]. Now we show a similar result for the 3-D
case. The Curl theorem [37] says

where and is the divergence of , which
is a scalar function on . Therefore, the motion equation for
the above function on a surface point can be readily
obtained by the Euler-Lagrange equation as

where is the normal direction of on . In our case, every
point on the surface is also on the surface of its
neighboring region . Thus, the overall motion equation for
the discriminative model is

Motion Equation for : The motion equation for a term
similar to was shown in [32] and more clearly illustrated in
[31]. To make this paper self-contained, we give the derivation
here also. For region

where

and in the equation shown at the top of the page.

Letting leads to the decrease in the energy. Thus,
the motion equation for is

where is the mean curvature and denotes the normal di-
rection at .
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