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Abstract. In object recognition in general and in face detection in par-
ticular, data alignment is necessary to achieve good classification results
with certain statistical learning approaches such as Viola-Jones. Data can
be aligned in one of two ways: (1) by separating the data into coherent
groups and training separate classifiers for each; (2) by adjusting training
samples so they lie in correspondence. If done manually, both procedures
are labor intensive and can significantly add to the cost of labeling. In this
paper we present a unified boosting framework for simultaneous learn-
ing and alignment. We present a novel boosting algorithm for Multiple
Pose Learning (MPL), where the goal is to simultaneously split data into
groups and train classifiers for each. We also review Multiple Instance
Learning (MIL), and in particular MIL-BOOST, and describe how to use it
to simultaneously train a classifier and bring data into correspondence.
We show results on variations of LFW and MNIST, demonstrating the
potential of these approaches.

1 Introduction

In object recognition in general and in face detection in particular, data align-
ment is often necessary to achieve good classification results. E.g., consider the
Viola-Jones face detector [1]. The detector works best when trained with images
that come from a single coherent group (e.g. frontal faces) and lie in approx-
imate correspondence (e.g. eyes aligned). Generalizing Viola-Jones to multiple
poses and offset training data remains an active area of research.

In this work we are interested in strategies for simultaneous learning and
alignment. Data can be aligned in one of two ways: (1) by separating the data
into coherent groups and training separate classifiers for each; (2) by adjusting
training samples so they lie in correspondence (see Fig. 1). The first strategy is
appropriate for out of plane rotation of faces while the second strategy is ap-
propriate for dealing with translational offset. If done manually, both alignment
strategies are labor intensive and can significantly add to the cost of labeling.

In this paper we present a unified boosting framework for simultaneous learn-
ing and alignment derived using Friedman’s gradient boosting methodology [2].
We present a novel boosting algorithm for simultaneously splitting data into
groups and training classifiers for each group. We refer to this problem as Mul-
tiple Pose Learning (MPL) and our algorithm as MPL-BOOST. We also review
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Fig. 1. We present two strategies for simultaneous learning and alignment. Data can be

aligned by: (1) separating the data into coherent groups and training separate classifiers
for each (MPL); (2) adjusting training samples so they lie in correspondence (MIL).

Multiple Instance Learning (MIL) [3], and describe how to use it to simultane-
ously train a classifier and bring data into correspondence. In particular, we
re-derive and generalize MIL-BOOST, first presented in [4]. Throughout we show
the deep connection between these two approaches.

We begin with a review of related work below. In Section 2 we give a detailed
and accessible derivation of MPL-BOOST and MIL-BOOST. We show results on
variations of the LFW face dataset [5] as well as MNIST digits [6] in Section 3,
demonstrating the potential of these approaches. We conclude in Section 4.

1.1 Related Work

A number of papers have focused on grouping data either manually or automat-
ically. E.g., one approach for face detection is to train multiple detectors, each
on a manually defined range of orientations [7,8]. A pre-processing step can be
used to predict orientation [7]. However, manual grouping of data can be labor
intensive and suboptimal. Alternatively, data can be clustered prior to train-
ing [9], but the resulting clustering is likely suboptimal. Most related to this are
methods that attempt to group the data during training [10-12], e.g. by learning
a tree classifier that naturally splits the data [11,12]. Although promising, these
approaches often have heuristic splitting procedures and many parameters.

A number of papers have addressed the second form of alignment. The most
direct approach is to try to bring a set of images into joint alignment via con-
gealing [13-15] or thin plate splines [16]. This line of work has yielded promising
results; however, alignment is independent of learning. Many weakly supervised
recognition methods [17-19] perform alignment implicitly during training, but
these alignment strategies are not easily transferable to boosted detection sys-
tems. Finally, MIL has been successfully applied to a number of vision problems
[20, 21, 4]. MIL offers one way of simultaneously training a discriminative clas-
sifier and bringing data into correspondence. As mentioned, we re-derive and
generalize MIL-BOOST [4]; details given in Sec. 2.4.

2 Multi-Pose & Multi-Instance Boosting

We begin with an overview of gradient boosting with the log likelihood in Section
2.1, followed by a discussion of smooth approximations of the max function in
2.2. This will serve as the foundation of MPL-BOOST and MIL-BOOST, presented
in 2.3 and 2.4, respectively. Finally, we propose various extensions in 2.5.
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Fig. 2. Illustration of gradient boosting, see text.
2.1 Gradient Boosting Overview

We begin with an overview of the standard setting for supervised learning. Train-
ing data consists of n samples x; € X and n corresponding labels y; € ), where
typically X = R? and in binary classification ) = {—1,1}. The goal is to learn
a classification function h : X — ) that generalizes well to unseen data.

Boosting has been shown to be a very successful approach for binary classi-
fication. In boosting, the goal is to train a classifier of the form:

T
h(z) = ahi(x), (1)

where each hy : X — )Y is a weak learner whose performance may only be
slightly above chance, and the a; weigh the weak learners’ relative importance.
Boosting combines multiple weak learners into a single strong classifier with
low error. Training proceeds sequentially. In each phase incorrectly classified
examples receive more weight; details vary according to boosting algorithm.

Friedman [2] proposes an elegant method for deriving boosting algorithms
for a wide range of loss functions. The general idea is to optimize a loss function
L(h) by performing gradient descent on h (known as gradient descent in function
space). Intuitively, the idea is to always select the h; that most reduces the loss
on the training data. Finding the best h; proceeds in two stages: (1) compute
the optimal weak classifier response and (2) from the available candidates select
the weak classifier that best approximates the optimal response.

More formally, we can consider h as an n vector whose i** component h; has
the value h(x;). The loss £ is a function over h, and the goal is to minimize £(h)
w.r.t. to h via gradient descent. In other words to find the optimal weak classifier
response in each phase ¢ we compute —g—ﬁ, which is a vector with components
fg—li. Ideally we would select h; such that w; = hy(z;) Vi; however, in
practice we are limited in the choice of h;. Therefore, Friedman proposes to find
the h; which is as close as possible to the gradient in function space:

w; =

n
hy = argmaxZwih(xi) (2)

L
The general process is illustrated in Fig. 2. Once we compute hy, the step size
oy can be found via a line search (again minimizing £(h)). Putting everything
together, we obtain the boosting procedure in Fig. 3. Remaining details follow.
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Input: Dataset {z1,...,zn}, {y1,...,yn},us € {—1,1}

1: fort=1to T do

2: Compute weights w; = —g—é

3:  Train weak classifier h; using weights |w;|
he = argmin, 37, 1(h(w:) # y:)lwi

4:  Find oy via line search to minimize £(h)
a; = argmin, L(h + ahy)

5: Update strong classifier h < h + athy.

6: end for

Fig. 3. Boosting via gradient descent in function space.

Log Likelihood: In the remainder of this paper we use the negative log likeli-
hood as the loss function. If we define p; = p(y; = 1|x;), we can write:

n

() = =" (10 = D)logp: + 1y = —1)log(1 - ) ). (3)

i=1

We begin by deriving a standard boosting algorithm using this loss function and
gradient descent boosting. This derivation will serve as the foundation for the
derivations for MPL-BOOST and MIL-BOOST in Sections 2.3 and 2.4. Note that a
related derivation is done in [2]; furthermore, the popular LogitBoost algorithm
[22] uses similar criteria, though the actual optimization procedure differs.
First, we define p; in terms of h; = h(x;). We follow [2,22] and define:

pi = 0 (2h;), (4)

m is the sigmoid. Note that o(v) € [0,1] and 92 = o(v)(1—

o(v)). Finally, taking the derivatives:
oL { =1 ify =1

where o(v) =

Pi

()

op s dfyi=-1
Ipi
= 2p;(1 —pi), 6
oo = (1= p) (6)
and using the chain rule, we get w; = *glf, = fng %:
o {—2191' ify; =—-1 ™

Intuitively, negatives with large p; and positives with small p; receive high weight.

Training hg: In the original gradient boosting paper weak classifiers are chosen
by optimizing Eqn. (2), while in most boosting algorithms weak classifiers are
chosen by optimizing weighted error:

hy = arg mhinz L(h(zi) # yi)ws, (8)
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where y; € {—1,1}. The criterion in Eqn. (8) is more common and many existing
learning algorithms approximately minimize this cost function. Here we show
that for binary classifiers the first cost function can be converted to the second.
Let y; = sign(w;) (typically y; = y;), and w} = |w;|/ >, (|w;]). Then:
hiy1 = argm}znz —h(x;)w;

= argmhinz (2 1(h(ws) # y;) — D)|wil

= argmgnz 2 1(h(w) # y;)|wil

= argrrgnz 1(h(zs) # yi)w;

This transformation allows us to use existing learning algorithms, e.g. decision
stumps, that minimize weighted error or some approximation to it to train h;.

Initial distribution: It is often useful to train with an initial (prior) distri-
bution over the data, e.g. if more negative than positive training examples are
available. Let w; be the prior on the i*" example. We can modify £ as follows:

L(h) = *Z%‘(l(yz‘ = 1)logp; + 1(y; = —1)log(1 *pi))- ()

i=1

Observe that doubling the weight of x; is the same as having two copies of x; in

the training data. The derivative of £ becomes % = %" if y; =1 and 1‘1; - if
y; = —1. Modifying the corresponding equations for w; is trivial.

Real vs. Discrete hy: Thus far we have assumed that the weak classifiers are
binary, i.e. hi(x) € {—1,1}. If, however, h; outputs a real valued confidence or
score, we can use this score directly. The procedure outlined in Fig. 3 remains
unchanged. The alternative is to just use sign(h¢(z)). Using the terminology of
[22], we refer to these variations as real and discrete, respectively.

2.2 Softmax Functions

We now present an overview of differentiable approximations of the max, which
we refer to as the softmaz. The general idea is to approximate the max over
{v1,..., v} by a differentiable function g,(vy), such that:

ge(ve) ~ max(ve) = v (10)

0ge(ve) - 1(v; = vy)
ov; Yoo Lo =vy)

Intuitively, if v; is the unique max, then changing v; changes the max by the
same amount, otherwise changing v; does not affect the max.

(11)
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Fig. 4. Various models g¢(v¢) applied to ve = (v,1 —v).

A number of approximations for g have been proposed. We summarize the
choices used here in Table 1: a variant of log-sum-exponential (LSE) [23,24],
generalized mean (GM), noisy-or (NOR) [4], and the ISR model [20,4]. In Fig.
4 we show the different models applied to (v,1 — v) for v € [0, 1].

LSE and GM each have a parameter r the controls their sharpness and accu-
racy; ge(ve) — v« as r — oo (note that large r can lead to numerical instability).
For LSE one can show that v, — log(m)/r < ge(ve) < vi [23] and for GM that
(1/m)" v, < go(ve) < vy, where m = |v|. NOR and ISR are only defined over
[0, 1]. Both have probabilistic interpretations and work well in practice; however,
these models are best suited for small m as gs(v¢) — 1 as m — oo. Finally, all
models are exact for m = 1, and if V¢ vy € [0, 1], then 0 < gy(ve) < 1 for all
models.

ge(ve) 0ge(ve)/Ov; domain
LSE % In (% D eXP(”M)) % [—00, 00]
GM (o 2 U?)% ge(w)% [0, oc]
NOR 1—T1,(1—v) Lo [0, 1]
R o T ) N (8

Table 1. Four softmax approximations g,;(ve) ~ max,(vy).

2.3 Multiple Pose Learning

We now present a boosting approach for simultaneously splitting data into
groups and training a classifier for each group. Similar to standard supervised
learning, we are given n samples xz; € X and n corresponding labels y; €
{—1,+1}. We assume, however, that there are K latent variables y¥ € {1, +1}
associated with each sample. Each latent variable defines membership to one of
the K groups. A sample is considered positive if it belongs to at least one of
these groups, which can be expressed as follows:

yi = max(y;) (12)
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Our goal is to simultaneously split the positive data into K groups and train
K classifiers h',... ., h® one per group, so that maxj(h”*(z;)) = y;. We call
this problem Multiple Pose Learning. Note that the latent variables y* are not
known; if they were, we could train each h* using standard learning approaches.
As before, we would like to optimize the negative log likelihood L. However,
we need to modify our definition of the probability of x;. We define the prob-
ability p¥ = p*(y; = 1]x;) according to a single classifier h* as p¥ = o(2h¥),
where h¥ = h*(z;). This is similar to Eqn. (4). Given all of the classifiers, we
define the probability p; = p(y; = 1|z;) as the mazimum over the probabilities
pk. Using one of the approximations g of the max from Section 2.2, we write:

pi = ge(pf) = gr(o(2hy)) (13)

This can be viewed as the probabilistic approximation of Eqn. (12). Note that
p; and consequently £ depend on each h¥; to make this dependence explicit we
write L£(h', .- h®). We optimize L(h!,--- ,h®) by coordinate descent, cycling
through &, where in each phase we add a weak classifier to h* while keeping all
other weak classifiers fixed. The algorithm is summarized in Figure 5.

Input: Dataset {x1,..., 20}, {y1,.. . yn},us € {—1,1}, K
1: fort=1to T do
2: for k=1to K do

3: Compute weights wf = — ;f’.v
4: Train weak classifier hf using weights |w?|

hi = argmin, 3=, 1(h(z:) # yi)|wy|

5: Find oy via line search to minimize £(-, h*,.)
a¢ = argmin,, £(-, h" + ahf, )

6: Update strong classifier h® « h* + ofh¥.

7:  end for

8: end for

Fig. 5. MPL-BOOST

7

All that remains is to derive w —SnF-

Using the chain rule we get:

oL _ oc op: op}
onF ~ dp; OpF ok

(14)

o,k
All other terms cancel. Plugging in g—; and gﬁ@ derived in Eqns. (5-6), we get:
2k (1—=pk ) .
Wi =N _opF(1—p*) 8p; -
pllipipl)% ify; = —1

The form of gg; depends on the choice of softmax model g, see Table 1. We list

i

the equations for w¥ for different choices of the softmax in Table 2.
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yi =—1 y; =1
Lop | PR e S tetn
NOR —2pk w
ISR | R = e Ao e o

Table 2. MPL equations for wf for different choices of g.

2.4 Multiple Instance Learning

We now turn to Multiple Instance Learning (MIL), and re-derive and generalize
MIL-BOOST [4]. MIL was introduced in [3] for scenarios where a training sample
cannot be represented as a single feature vector, but rather as a set of m vectors,
often called a ‘bag’, X; = {x;1,...,Zim}- It is assumed that every instance has
some true label y;; € {—1,+1}, but its value is not known during training (it
is latent, much like y¥ in MPL). A bag is labeled positive if at least one of its
instances is positive, which can be expressed as follows:

yi = m?X(yij) (16)

Here our goal is to learn a classifier h using only bag labels y;, such that
max;(h(z;;)) = y;. Similar to MPL, if the latent variables y;; were known this
classifier could be trained with standard supervised learning.

As in the previous cases, we would like to optimize the negative log likelihood
L. To do so we must define p; = p(y; = 1|X;), the probability of a bag X;. We
begin by defining the probability p;; = p(y;; = 1|z;;) of an instance z;; in the
same manner as before: p;; = o(2h;;), where h;; = h(z;;). Given the instance
probabilities, we define the bag probability p; as the mazimum over the instance
probabilities p;;. Using the softmax g in place of the max we write:

pi = g;(pij) = g;(o(2hy;)) (17)

This can be viewed as the probabilistic approximation of Eqn. (16). Note the
similarity between Eqns. (12) and (16), and also between Eqns. (13) and (17).
Although the form of the input data and learned classifiers for MIL and MPL are
different, the form of the weights w;; is nearly identical to the form of the weights
w?. In fact, if we replace the superscript k with the subscript j in Eqns. (14)
and (15), we get the equivalent MIL equations (not shown).

Algorithm details are given in Figure 6. The optimization procedure for MIL
is similar to the optimization procedure for regular boosting described in Section
2.1; compare Figures 3 and 6.
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Input: Dataset {X1,...,Xn}, {y1,...,yn}ys € {—1,1}
1: for t =1 to T do

2:  Compute weights w;; = —-9%

oh,;
3:  Train weak classifier h, using]weights |wij|
he = argminy, 3, 1(h(zi;) # yi)|wi;|
4:  Find oy via line search to minimize £(h)
a; = argmin, L(h + ahy)
5: Update strong classifier h <« h + athy.
6: end for

Fig. 6. MIL-BOOST

2.5 Extensions

For completeness, we conclude by discussing a number of noteworthy extensions
and variations to MPL and MIL, which we leave to future work.

Combining MPL and MIL Thus far we have considered the two solutions to
the alignment problem independently. It is conceivable that in certain situation
it would be beneficial to apply both alignment approaches simultaneously. Here
we briefly describe such an approach.

We are given a training dataset consisting of bags X; = {x;1,..., %} and
bag labels y; € {—1,+1}. We assume that there exist K latent variables yfj for
each sample z;; which define group memberships as in MPL. A bag is labeled
positive if at least one of its instances belongs to at least one of the K groups:

yi = max mjax(yfj) = n}%x(yfj) (18)

The formulation of this seemingly more complex problem is actually similar to
both MIL and MPL. We can define the probability of z;; according to h* in the
same manner as before: pfj = O’(2hi-€j)7 where hfj = h*(z;;). Then, we can define
the bag probability p; as the maximum over the instances and the classifiers:

pi = gin(pf;) = g;(o(2h35)) (19)
Note the similarity of Eqn. (19) to Eqns. (13) and (17). The form of the weights
wfj = 76%9_ is again very similar to both MIL and MPL. Although we omit

further detaijls7 derivation of the resulting boosting algorithm is straightforward.

Alternate MPL/MIL Formulation When deriving MPL, we defined p*(y; =
1|z;) as p¥ = o(2h¥), and the overall probability as p; = gx(pF). Instead of
defining p; in terms of the p¥, we could define h; = gx(h¥) and p; in terms of h;:

pi = 0(2h;) = o(2gx(hf)) (20)
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Compare with Eqn. (13). Since h* € R, only the LSE softmax model is appro-
priate (see Table 1). Taking derivatives as before, we obtain:

s OLOp; Oh;  Oh;  exp(rhb)
w; = S Wi = Wik (21)
Op; Oh; Oh; oh; >_cexp(rhy)
where w; are the weights given in Eqn. (7). These weights can be used directly
in our MPL boosting algorithm, see Fig. 5. Note that we could apply the same
exact re-derivation for MIL, we omit details for space.

Negatives in MPL/MIL In MIL we defined p; = p(y; = 1/X;) in terms of p;;,
allowing us to write an expression for £. We couldn’t write £ directly in terms of
pi; as we did not know the instance labels y;;. However, for negatives, we know
that y;; = —1 for every j. We can thus write an alternate expression for L:
n m
Lh)=-)" (1(% =1)logp; + 1(y; = —1) ) _log(1 _pij)>' (22)
i=1 j=1
For positives, w;; remains unchanged. For negatives, w;; = —2p;;, as in Eqn.
7. All negative instances are treated identically regardless of the bag X; they
came from, just as in the NOR model. In MPL, we can use the same variant of
L, obtaining wf”' = —2pi-C for negatives. This seems appropriate, as each classifier
h* has to correctly classify every negative.

MNIST Bags

Fig. 7. Examples of positive (green) and negative (red) bags for the MIL experiments:
Left: MNIST, Middle: LFW. For positive bags we highlight the true (unknown) object
location. Right: Actual detections of a MIL-BOOST classifier (after non-maximal suppr.).

3 Experiments

We used two datasets: LFW [5] and MNIST [6]. MNIST is a simple optical digit
recognition dataset; we use it to illustrate certain properties of the algorithms
presented. The LFW dataset contains images of faces in the media. Although
primarily intended for evaluating face recognition, we use it within a detection
setting. For ‘hard’ non-face images we used false-positives returned by a Viola-
Jones face detector. Fig. 7 shows example images from each datasets. In all
experiments we use random Haar features [25] as the weak classifiers.
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3.1 Multiple Instance Learning

As shown in [4], MIL-BOOST is well suited for discovering translational alignment.
In fact, Viola et al. argue that delineating object boundaries is an inherently
ambiguous task. Instead, we place several overlapping bounding boxes in a bag
and use MIL to simultaneously train a classifier and select a good alignment.
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Fig. 8. MIL Results. Top: MNIST, Bottom: LFW. (a) Comparison of the different
softmax functions. () Comparing the discrete and real versions of MIL-BOOST. (c¢)
Equal error rate (EER) versus the number of weak classifiers. (d) MIL-BOOST compared
to standard learning (AdaBoost) on aligned and non-aligned data.
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LFW The LFW faces are aligned and centered. For the purpose of this exper-
iment we ‘corrupted’ this alignment by randomly shifting the face 1-10 pixels
within each 63 x 63 image. The same process was applied to negatives to avoid
artifacts. Example images are shown in Figure 7. In each trial we used 400 im-
ages for training and 400 for testing; results are averages over 10 trial. For all
algorithms tested we used boosting to select T' = 64 weak stump classifiers from
a pool of 1000 random Haar features.

Our results can be divided into 3 groups. First, we compare variations of
MIL-BOOST. We show results obtained using different softmax function in Fig.
8(a) and using the real and discrete variations in 8(b). Second, we compare MIL-
BOOST with standard supervised learning. We trained two additional classifiers
using AdaBoost [22]: one using the unaligned data we used for MIL and one using
cropped and aligned data. Results are shown in Fig. 8(c-d).

Finally, we seek to measure how well MIL-BOOST aligns the data. Specifi-
cally, we measure the consistency of the alignment w.r.t. to the ground truth (a
constant offset in the predictions can easily be corrected). We define the align-
ment error € as the standard deviation of the true and predicted locations [}
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and l;: € = std(I¥ — ;). We compute [; by smoothing the classifier response and
recording the maximum location (but only for i s.t. p; > 25%).

For MIL-BOOST (the Real-LSE version) the alignment error averaged over 10
trials was € = 5.07. For comparison, we evaluated how well AdaBoost trained
with (the small amount of) aligned data can perform alignment. The alignment
error was € = 5.97, which was actually higher. The classifier response was rather
diffuse, most likely due to the small amount of training data (note that Ad-
aBoost with aligned data still had lower classification error). Nevertheless, this
experiment suggests that MIL-BOOST does indeed recover a good alignment.

False Neg

70.05 0.1 0.15 0.2 0.04 0.06 0.08 01
False Pos False Pos

Fig. 9. MPL Results. ROC plots comparing four variants of MPL-BOOST and standard
learning (AdaBoost) with: left: MNIST; right: LEW.

MNIST We arbitrarily chose the digit ‘3’ to be the positive and the rest nega-
tive. We pad each 28 x 28 image with an 8 pixel border and randomly translated
the digit within the resulting 44 x 44 image. All results are averaged over 10
trials and use 1000 images, 10% for training each time. We performed identical
experiments as for the LFW data. Results are shown in Figure 8, top; the average
alignment errors were € = 3.08 for AdaBoost and € = 1.40 for MIL-BOOST.

3.2 Multiple Pose Learning

The goal of MPL is to simultaneously group data and train a classifier for each
group. Therefore a natural application of MPL is to train detectors for object
categories that have several distinct views. E.g., out of plane rotations make it
difficult to place faces into correspondence, which can make it difficult to train
a precise face detector. On the other hand, if we can accurately group data
during training, we not only achieve higher accuracy but also potentially more
meaningful output (e.g. a face detector that also predicts facial pose).

LFW We took 2000 LEW faces and synthesized three distinct groups: (1) faces
kept as is, (2) faces rescaled by a factor of 2.5, and (2) faces rescaled by 2
and rotated 90°. In each case we use boosting to select T' = 64 weak classifiers
from 1000 candidates. We randomly split 4000 images into equal sized training
and testing sets, and average all experiments over 10 trials. Figure 9(right) shows
ROC curves comparing AdaBoost with four versions of MPL-BOOST. In Fig. 10 we
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show randomly selected test images grouped according to the learned classifiers.
We see that MPL-BOOST recovers the groups reasonably well. Since we have the
ground truth memberships y¥, we can quantify the quality of the grouping (up
to a permutation of the group ids). For the faces, the grouping accuracy for the
four softmax models were: NOR 0.81%, ISR 0.84%, GM 0.83%, LSE 0.88%.

MNIST Our final experiment is similar to the one described above. We chose
the digits 0-2 as positives and the others as negatives. The setup varied only
slightly (1500 positives, 1500 negatives, 40% used for training, averaged over
10 trials). ROC curves are shown in Fig. 9 (left). We computed membership
accuracy by assuming each positive digit forms its own group: NOR 0.83%, ISR
0.89%, GM 0.87%, LSE 0.87%.
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Fig.10. MPL Alignment Results. Randomly selected test images grouped accord-
ing to the 3 classifiers trained with MpL. Top: MNIST; Bottom: LEW.

4 Conclusion and Future Work

In this paper we discussed two simultaneous learning and alignment strategies
that can potentially lead to higher accuracy detection systems. Specifically, we
derived a novel framework we call Multiple Pose Learning and a unified boost-
ing approach that encompasses both MPL and MIL. The results we presented
are preliminary but promising. Significant testing remains to evaluate if these
approaches can improve state of the art detection systems. We also described a
number of extensions to MPL and MIL that warrant further investigation.
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