
Task Specific Local Region Matching

Boris Babenko, Piotr Dollár and Serge Belongie
Department of Computer Science and Engineering

University of California, San Diego
{bbabenko,pdollar,sjb}@cs.ucsd.edu

Abstract
Many problems in computer vision require the knowl-

edge of potential point correspondences between two im-
ages. The usual approach for automatically determining
correspondences begins by comparing small neighborhoods
of high saliency in both images. Since speed is of the
essence, most current approaches for local region match-
ing involve the computation of a feature vector that is in-
variant to various geometric and photometric transforma-
tions, followed by fast distance computations using stan-
dard vector norms. These algorithms include many param-
eters, and choosing an algorithm and setting its parameters
for a given problem is more an art than a science. Fur-
thermore, although invariance of the resulting feature space
is in general desirable, there is necessarily a tradeoff be-
tween invariance and descriptiveness for any given task. In
this paper we pose local region matching as a classification
problem, and use powerful machine learning techniques to
train a classifier that selects features from a much larger
pool. Our algorithm can be trained on specific domains or
tasks, and performs better than the state of the art in such
cases. Since our method is an application of boosting, we
refer to it as Boosted Region Matching (BOOM).

1. Introduction
Local region matching is a tool for discovering potential

correspondences between two images, where the regions
are centered on detected interest points. These correspon-
dences can then be used in various computer vision prob-
lems such as pose estimation and wide baseline matching
[17, 31, 28]. In the realm of object and scene recognition,
local region matching has many benefits over global match-
ing because it is more robust to occlusions and viewpoint
changes [29]. Although local region matching has also been
used for broad category classification (e.g. [12, 11, 24]), in
this paper we limit ourselves to instances where correspon-
dences are not ambiguous.

The standard paradigm for local region matching has two
steps. The first step is interest point detection, which usually
consists of locating the maxima of the response of some

CLASSIFIERINPUT OUTPUT:
Is pair a match?

Yes

No()
BOOM

BOOM

()
Figure 1. Framing the correspondence problem as binary classification.
Rather than designing a new local region descriptors for a specific task, we
train a classifier using labeled examples of matching regions. The classifier
takes as input a pair of image patches, one extracted from each image, for
which we would like to know whether they are in correspondence.

interest/saliency function. More recent detection algorithms
are able to return the canonical scale and orientation of the
region, in addition to the location (for a recent survey, see
[26]).

The second step is to find correspondences between the
detected points. A descriptor is usually computed for each
point, using information about the image patch centered on
that point. These descriptors are designed to be invariant to
various geometric and photometric transformations. Near-
est neighbors in descriptor space are then putative corre-
spondences. Although a lot of work has gone into designing
descriptors that are robust to image transformations, there
is necessarily a tradeoff between invariance and descriptive-
ness. For example, if you wanted to match features between
images of a ‘6’ and a ‘9’, complete rotational invariance
could result in incorrect matches. A second drawback is
that although current algorithms are designed for general
settings, when the domain becomes more specialized, the
feature space must be tuned or completely re-engineered.

An illustration of this can be seen in Fig. 2 where we
used the popular SIFT [22] descriptor to find matches be-
tween contrast reversed letter pairs. Because the SIFT de-
scriptor is not engineered to handle this type of invariance,
it performs poorly in this task. On the other hand, BOOM is
able to learn the invariance from a small number of training
images, and performs much better. Clearly, one could easily
tweak the SIFT algorithm to make it work in this particular
case. However, we argue that with more challenging data it

(a) SIFT (b) BOOM
Figure 2. An illustrative example: a set of contrast reversed letter pairs is shown. Each image is 85×70 pixels. Each× is an interest point, and the red lines
connect matching points. Since the letters are aligned, non-vertical lines are incorrect matches. (a) We used the SIFT descriptor to find correspondences
between each letter pair, by thresholding L2 distance between descriptors. (b) We trained BOOM on the first 13 letters of the alphabet, and used it detect
the correspondences as shown. Although in this simple example it would be easy to tweak SIFT to raise its performance, doing so for a more challenging
domain is not trivial.

is easier and more intuitive to provide training data than to
alter the descriptors.

In this paper, we introduce a local region matching al-
gorithm that can be trained for specific applications. Given
labeled examples of correspondences, it can learn the types
of invariance needed for that particular task. We divorce
the detection and description steps, and concentrate only on
the latter; any reasonable detector can be plugged into our
system. First, we pose the correspondence problem as a
simple binary classification task. We then design a classi-
fier that computes simple features of a pair of patches, and
outputs +1 or −1, depending on whether the two patches
are a correspondence or not, respectively (see Fig. 1 for
an illustration). The classifier can be trained with either
human labeled or synthesized data. The learning frame-
work we choose is the AdaBoost algorithm, which has been
shown to be effective and efficient for object detection [32].
Hence, we refer to our method as Boosted Region Matching
(BOOM). We apply our algorithm to images in various do-
mains, and compare our method to the SIFT descriptor,
which we consider to be a good representative of general
purpose descriptors. As a baseline, we also include the per-
formance of the raw pixel values as a descriptor (we refer to
this descriptor as PIXEL).

2. Previous Work
The literature on invariant image region detection and

description methods is quite rich, and there are advances
made every year. For a recent survey of point detectors
please refer to [26], and for a recent survey of descriptors
please refer to [25]. The latter finds the SIFT [22] descriptor
to be the best in many tasks, and this algorithm has become
widely used in many computer vision applications.

Several recent works use machine learning methods to
train a saliency classifier on human labeled data. In [9] an
edge detector is trained using images that have been labeled
by humans. Similarly, in [20], a saliency detector is trained
using human gaze data. Other methods, such as [15] and
[11], construct class specific saliency detectors.

Finally, there have also been a few works that pose the
problem of point matching as a classification or optimiza-
tion problem. In [23] an optimal linear combination of sim-
ple distance functions is computed for the task of nearest
neighbor search for patches of an image. Another method,

described in [21], poses point matching as a multiclass clas-
sification problem, where each point on a training image of
an object is considered a class. Extra examples of each class
are synthesized by perturbing the original image. Though
this method gives good results and is ideal for the case
where one particular object is of interest, it is unable to
generalize to unseen objects or scenes. In [30], an algo-
rithm called BoostPro is used to find a set of projections
in SIFT feature space that are explicitly sensitive to simi-
larity pairs that have been labeled and provided as training
data. In [34], a discriminative similarity function is learned
for the purpose of accurate motion estimation. Similarly,
in [18] a similarity function is learned for faces. Though
our method is similar, we address the general problem of
correspondence, rather than a specific application. Finally,
the approach in [33] uses learning to find a an optimal set
of parameters for a generalized SIFT descriptor by maxi-
mizing the area under the ROC curve for the training data.
The learning aspect of this approach is similar in spirit to
ours, though its generality is limited by the structure of the
SIFT-based model.

3. Boosted region matching
In this section we describe how to solve the correspon-

dence problem using binary classification, and give the
specifics of the learning framework and features we use.

3.1. Local region matching as binary classification
For our purposes, we define an interest point detector as

some function F(I) = (l1, l2...ln), where I is an image and
li is is the ith interest point. The information for each inter-
est point could be as minimal as 2D location li = (xi, yi),
or as rich as li = (xi, yi, θi, σi), where θi is the dominant
orientation, and σi is the dominant scale of the local neigh-
borhood centered around the point. In this sense, there is
a gray line between detection and description since domi-
nant orientation and scale could be considered as part of the
descriptor.

Given a set of interest points in two images, we look at
every possible pair of points, deciding whether each pair is
a putative correspondence. Note that we do not enforce a
1-to-1 mapping, nor do we constrain the number of points
in the images to be the same. Using the information re-
turned by a detector, we crop out two small patches of a
fixed size around those points. Patches can also be cropped

at the correct orientation and scale (if this information is
available from the detector), and then transformed to a fixed
size. Given two patches (pL, pR) we train a classifier such
that:

h(pL, pR) =
{

+1 if pL and pR are in correspondence
−1 otherwise

The training data is then a set of patch pairs and their labels.
We compute a set of features for the patch pairs, and train
a statistical classifier over these features. The test data has
a natural imbalance towards negative pairs, since most of
the possible point pairs in two images are not in correspon-
dence. This imbalance also arises in object detection, where
a classifier is applied to every patch in an image, and posi-
tive patches are rare (e.g. face detection). We use a learning
framework that is commonly used for object detection, and
is designed to deal with this issue.

3.2. Features
The AdaBoost algorithm [14] paired with simple Haar

type features has been used effectively for various object de-
tection and recognition tasks. In particular, Viola & Jones
[32] introduced a method to efficiently compute such fea-
tures and created a cascaded classifier for real-time face de-
tection. Our approach extends this work to the local region
matching domain.

Unlike the object detection problem, our features must
be computed over a pair of patches, rather than a single
patch. We extend the standard Haar features to fit our task.
First, we discuss a set of patch features that operate on a sin-
gle image patch, and then describe how to combine a pair
of patch features into a scalar pair feature.

3.3. Patch features
The patch features come in two types: sum and his-

togram. First, we define an image channel as g(I), where I
is either the grayscale image or one of the RGB color chan-
nels, and g is any function that takes an image as input and
returns an image of the same size. Examples of channels
include gradient magnitude, response map of an edge detec-
tor, or the RGB channels themselves (see Fig. 4 for a plot of
which image channels are chosen by our system for differ-
ent experiments). Let p be an array of channels computed
over some patch, indexed by c. We define sum(p[c], ri) to
be the sum of pixel values of p[c] inside rectangle ri. A
sum-type patch feature with |r| rectangles is then defined
as:

S(p) =
∑|r|

i=1 wisum(p[c], ri)∑|r|
i=1 |wi|area(ri)

The denominator is a normalization term to ensure that S
is between -1 and 1. Each sum-type feature is therefore pa-
rameterized by a channel index c, a set of rectangles r, and
a set of real-valued weights w for the rectangles. Similar
features were used in [32] over grayscale images, and in [9]

over various image channels. In our experiments we use
the following image channels for sum-type features: R,G,B
color channels (when available), brightness, gradient mag-
nitude, cos and sin of the gradient angle.

The histogram-type features are inspired by work in
[35], [8] and [22], that use histograms of oriented gradi-
ents (HOG). To construct such a histogram, gradient mag-
nitude values are dropped into bins according to the gra-
dient orientation. To generalize this notion, we define
hist(p[c], p[c′], ri) to be a histogram of pixel values of p[c]
inside rectangle ri, binned by the pixel values of p[c′] (in the
case of HOG, p[c] is gradient magnitude, and p[c′] is gradi-
ent orientation). We define a histogram-type patch feature
as:

H(p) =
|r|∑
i=1

wihist(p[c], p[c′], ri)

In our experiments we use the HOG channel pair, as well as
histograms of hue (c and c′ both index into the hue channel).

Both the sum and hist functions can be efficiently com-
puted via the integral image trick, as was introduced in [32]
for sums and [27] for histograms. The integral image is
computed once for each image, and the sum of any rectan-
gle in the image can subsequently be computed with only 4
memory accesses.

3.4. Pair features
Our pair features are divided into two types as well. As

would be expected, each pair feature in our system is com-
posed of two patch features (for sake of clarity, we refer
to these as the left and right patch features). Thus, a sum-
type pair feature is composed of two sum-type patch fea-
tures SL(p) and SR(p), and is computed as follows:

f(pL, pR) = |αSL(pL)k − βSR(pR)k|

This feature is a simple generalization of the Lk norm. For
example, if the coefficients α and β are 1, then k = 1 corre-
sponds to the L1 norm and k = 2 to the squared L2 norm.
Setting α or β to unequal values has the effect of altering
the relative normalization of the two patch features.

Similarly, a histogram-type pair feature is composed of
two histogram-type patch features HL(p) and HR(p). We
compute this feature as follows:

f(pL, pR) = ‖HL(pL)−HR(pR)‖2

While other histogram metrics could be used, we chose L2

distance for its simplicity.

3.5. Learning framework
The above features are plugged into an AdaBoost cas-

caded classifier, similar to what is described in [32]. At
each iteration the AdaBoost algorithm greedily chooses a
weak classifier with the minimum error. When the weak

90° Rotation:

Homographies:();();();();();()
();();();();();()

(a) (b)
Figure 3. (a) This figure shows a visualization of the features that were chosen by BOOM when trained on 90◦ rotations and on a range of homographies
(see Section 4.2). Brighter rectangles have higher weight. To make this figure less crowded, we chose not to show the image channel or type associated
with each feature. The features chosen for 90◦ rotations are intuitive – the left patch features are approximately 90◦ rotations of the right ones. For general
homographies the features are more complex, but still display some intuitive structure. (b) A pair feature is shown overlayed with a pair of training image
patches. For a positive patch pair the absolute difference or L2 distance will be close to 0, since the rectangles cover the same pixels.

0 5 10 15 20 25 30 35

gray

hue hist

saturation

grad mag

hog

cos(grad)

sin(grad)

% of features chosen

Graffiti

Fingerprints

Faces

Figure 4. Image channels associated with the features that were chosen
by BOOM for the three main experiments in Section 4. Notice that the
fingerprints and face images were grayscale, and thus the hue histogram
and saturation features were not chosen. Also, note that for the graffiti ex-
periment the system does not choose as many features that rely on gradient
angle. This is because we do not include any kind of orientation normal-
ization, so for patch pairs that exhibit rotation the gradient directions do
not have as much discriminative power.

classifiers each depend on only one feature, boosting inad-
vertently performs feature selection, resulting in an efficient
classifier. The cascade is then a decision list, where each
node is an AdaBoost classifier. An example is classified
positive only if all the nodes in the cascade classify it as pos-
itive. This framework works well in situations where there
are many more negative examples in the testing data, since
most of the negative examples can be weeded out quickly
by the first few nodes in the cascade. We refer the reader to
[32] for a more detailed discussion.

The only difference between the framework used by Vi-
ola & Jones and ours is the choice of the weak classifier.
While [32] uses a 1D stump classifier, we found that for our
purposes a range classifier worked better. Taking three pa-
rameters θL, θR ∈ R, β = {+1,−1} and a feature value x,
we define the range classifier as follows:

hθL,θR,β(x) =
{

β if x > θL & x < θR

−β otherwise

The algorithm to learn the parameters of this weak classi-
fier from data is straightforward, and involves a search for
the optimal thresholds θL and θR. The intuition behind this
choice of weak learner is that for a pair of similar patches,

the absolute difference or L2 distance of the two patch fea-
tures is close to 0 (see Fig. 3(b) for an example).

For each experiment we generate a large pool of pair fea-
tures randomly. Due to the number of parameters, the num-
ber of possible features is incredibly large, and the pool we
generate is only a small subset of all possibilities. To deal
with this issue, we perform steepest descent search over the
space of (α, β, k) on the top 100 sum-type features in every
iteration of AdaBoost, and pick the best resulting feature, as
suggested in [10]. This allows AdaBoost to explore an ap-
proximation of the entire space of features. Although giving
this extra power to the classifier may theoretically result in
overfitting, we have found that in our experiments this was
not an issue.

Though we could constrain our pair features to be sym-
metric, making their left and right patch sides identical, we
remove this constraint to make the system more flexible.
However, we do constrain the left and right features to be
parameterized by the same image channel index. An illus-
tration of the flexibility of asymmetric features is shown in
Fig. 3, where we ran a simple experiment to train BOOM
on 90◦ rotations, and show some of the features chosen. We
also show the features chosen when we trained BOOM on a
wide range of homographies (see Section 4 for details). In
both cases the chosen features display some intuitive struc-
ture.

We view these features as a set of ingredients that are
commonly used in designing invariant descriptors. Instead
of combining these ingredients by hand to fit some task, we
feed them into a supervised learning framework along with
labeled examples. Surely the design of these features was
not effortless. Nevertheless, this design must only be done
once; for each new task, the system learns how to combine
the features automatically from labeled data. Though the
features are simple and efficient to compute, our experi-
ments show that they are robust enough to handle a wide
variety of domains. Finally these features are easy to ex-
tend, either by adding more image channels, or by inventing
new feature types.

3.6. Efficiency
At run-time, for two images with N and M interest

points, respectively, our classifier gets invoked NM times.
Though the cascade and integral image tricks significantly

reduce the amount of computation needed, we can cut the
costs even more if we consider the features themselves. Re-
call that each pair feature consists of a left and right patch
feature. The left patch features get computed for patches
from the first image only, and the right patch features get
computed for patches from the second image only. Each
pair feature is then either a difference or L2 distance of the
values of the left and right patch features. Therefore, rather
than computing features for each pair, we simply precom-
pute the left and right patch features for all the patches in
the first and second image, respectively. When a pair fea-
ture is needed by the classifier, only a difference or L2 dis-
tance is left to compute. Computing the patch features re-
quires computation of different channels of the patch, so it
is much more expensive than the L2 distance, difference,
or thresholding steps. Therefore, while the brute force ap-
proach results in O(MN) expensive steps, precomputing
the responses cuts this down to O(MN) cheap steps and
O(M + N) expensive steps.

This makes BOOM similar to standard methods of as-
signing descriptors to each point, except in our case, the de-
scriptors used on the two images are not symmetric, since
the right and left patch features need not be the same. Sec-
ondly, instead of using a vector norm to compute similar-
ity, we use a slightly more complicated function which in-
cludes thresholding, subtraction and L2 distance computa-
tions (all the parts of the final classifier returned by Ad-
aBoost). Hence, in terms of the computational costs, our
method is comparable to standard techniques used for lo-
cal region matching. Another interesting advantage of our
approach is that by controlling the depth of the AdaBoost
cascade, the user can directly control the tradeoff between
accuracy and computational cost, as is mandated by the ap-
plication. It is not clear how one would do this with conven-
tional descriptor based methods. In general, the run time for
our un-optimized code for a pair of images is of the same
order of magnitude as Lowe’s SIFT code. For example, a
pair of images from the experiment in Section 4.2 take a lit-
tle over a minute to run. Note that these images have about
3,000 points each, so the classifier gets invoked close to 107

times. Training time was under 30 minutes for all experi-
ments.

4. Experiments
In this section we present our results on three differ-

ent experiments. Our goal was to choose experiments in
a wide range of domains where correspondence detection
is necessary. In particular we chose the following three
data sets: (1) point matching in a planar scene under per-
spective distortion, which is useful for panorama stitching,
wide baseline matching, etc, (2) fingerprint minutia match-
ing, which is used in fingerprint recognition engines, and
(3) point matching in faces with non-linear illumination
changes, which is useful for face recognition and tracking.

Figure 5. Fingerprints generated using the SFinGe tool. Top row displays
a low pressure setting, bottom row display a high pressure setting. The last
column shows a close-up, demonstrating the non-linear change in a small
window. Each image is 290× 242 pixels.

Because we treat the matching problem as classification, we
evaluate performance by comparing ROC curves.

4.1. Methodology
In our experiments, we compare the performance of

BOOM and the SIFT descriptor1. Also, as a baseline, we
compute results for the simplest descriptor: the grayscale
image patch of a fixed size around the point strung out into
a vector (we refer to this method as PIXEL). We realize that
more recent algorithms have claimed to outperform SIFT
(e.g. [6, 19, 25]) and some older techniques are also popu-
lar (e.g. [4, 5]); we chose SIFT because it is widely used in
the community and because we believe it is a good repre-
sentative of generic local region descriptor algorithms.

As we mentioned before, any interest point detector can
be plugged into our system. We decided to keep this con-
stant in our experiments, and used the DoG detector de-
scribed in [22], which comes built in to Lowe’s SIFT code.
The DoG detector returns (x, y, θ, σ) coordinates of each
point. While SIFT uses all of this information, in our exper-
iments we decided to discard scale and orientation when us-
ing the detector with BOOM to demonstrate the robustness
of our features. The image channels used by BOOM, and
all learning parameters except cascade depth and patch size
are kept the same for all experiments. The cascade depth
depends on the amount and complexity of data, and must
be tuned slightly to avoid overfitting. The patch size we
use is roughly 10% of the image diagnoal in each domain.
Empirically we have found that the exact patch size does
not significantly affect performance. The same patch size is
used for PIXEL measurements.

Ground truth correspondences can either be provided
manually or automatically. In our experiments, each image
pair is related by some known homography H . For each
point x1 in the first image we go through each point x2 in
the second image and label the pair as a “true correspon-
dence” if ‖x1 − Hx2‖ ≤ ρ, where ρ is roughly 1% of the
image size (similar criteria were used in [25]). The ROC
curves shown are generated in the following ways:

1Made available by David Lowe at [1] .

• for BOOM we sweep through the threshold of the last
layer of the cascade.

• for SIFT and PIXEL we threshold the L2 distance be-
tween two points in SIFT feature space or pixel value
space, respectively, and sweep through this threshold.

Our intention is to capture the raw performance of the
descriptors. Many post-processing tricks exist to further re-
fine or filter the potential correspondences. For example,
one could limit the matches to be one-to-one by taking only
the best match for each point, or run RANSAC [13] to ro-
bustly fit a homography or fundamental matrix to the cor-
respondences. Alternatively, Lowe suggests using the ra-
tio between the top two matches as a gauge for the qual-
ity of the match. We stay agnostic to these post-processing
techniques, and use only the output of BOOM and L2 dis-
tance between the SIFT and PIXEL descriptors when com-
paring results. Furthermore, we chose not to compare the
performance of our algorithm within an end-to-end system,
and instead isolate the matching accuracy. We assume that
any end-to-end system that relies on correspondences would
benefit from a higher matching accuracy.
4.2. Planar scene under perspective

In the first experiment we use the INRIA set of graffiti
images, which are commonly used to evaluate region de-
scriptors 2. To train BOOM we took one graffiti image
and synthesized a range of out-of-plane rotations (shown
in Fig. 6(a) and (b)). This data sets also comes with com-
puted homographies relating the planar scenes in the pic-
tures shown in Fig. 7 to the reference image shown in
Fig. 6(c). We use this set of images and the known ho-
mographies as ground truth for testing. Note that although
we train with synthetic data, the testing is done on real im-
ages. Furthermore, the same classifier is used on all testing
images.
4.3. Fingerprints

Fingerprint minutia matching is a well studied problem
that has many applications in industry. The SFinGe tool
is a fingerprint synthesis program that can generate realis-
tic fingerprints that was designed to generate large amounts
of test data for fingerprint recognition algorithms [7]. The
tool allows the user to set various parameters such as geo-
metric transformations, amount of noise and blur, the type
of fingerprint (arch, right loop, left loop, whirl, and tented
arch). Some examples of what this tool can produce are
shown in Fig. 5. For this experiment we generated pairs of
fingerprints with two different pressure parameters (low and
high pressure)3. The change is purely photometric, and the
fingerprint pairs are pixel-registered, meaning the homogra-
phy H = I . Though this is convenient for gathering ground

2Dataset made available by the Visual Geometry Group at University
of Oxfordat [2]

3A demo version of the software was kindly provided by the Biometric
Systems Lab at University of Bologna.

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

% False Positive

%
 T

r
u

e
 P

o
s

it
iv

e

BOOM

SIFT

PIXEL

Figure 8. FINGERPRINTS. ROC curve for minutia matching of three
test fingerprint pairs, which are shown in Fig. 5. BOOM is able to learn
the invariance and outperforms both PIXEL and SIFT.

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

% False Positive

%
 T

r
u

e
 P

o
s

it
iv

e

BOOM

SIFT

PIXEL

Figure 9. FACES. ROC curve for three test face pairs. One of the test
pairs is shown in Fig. 10. Surprisingly, PIXEL outperforms the SIFT de-
scriptor; BOOM outperforms both PIXEL and SIFT.

truth correspondences, it is certainly not necessary in the
testing phase. Fig. 5 also shows a close-up of two corre-
sponding patches from one of the test pairs. We see that the
change in the patches is non-linear. We train BOOM on 12
fingerprint pairs of different types, and test on 3 novel pairs.
In Fig. 4 we see that BOOM tends to choose image chan-
nels that rely on gradient direction. ROC plots for BOOM,
SIFT and PIXEL are shown in Fig. 8. We see that SIFT
has very poor performance in this domain because the im-
age transformations are not well modeled by SIFT’s design.
Even with a relatively small amount of training data BOOM
is able to get decent performance on this data set. Note that
this performance is not up to par with state of the art fin-
ger print matching algorithms. A part of the problem is that
the DoG detector that we used for the sake of consistency
is not particularly effective in this task. Nevertheless, with
minimal effort and simple generic features BOOM is able
to outperform a general purpose descriptor.

4.4. Non-linear illumination change
The Yale Face Database B (Yale-B) [16] contains pho-

tographs of 10 subjects under different poses and lighting
conditions. The photographs were taken with a special rig
such that all photographs of each subject were taken within
2 seconds. This ensures that per pose, all photographs
of each person are pixel-registered, and the homography
H = I as before. For this experiment we chose two dif-

(a) (b) (c)
Figure 6. (a) The training reference image. (b) All of the synthesized out-of-plane rotations used in training. (c) The testing reference image. Images are
640 × 480 pixels. In all cases BOOM outperforms SIFT, and both outperform the PIXEL baseline.

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

% False Positive

%
 T

r
u

e
 P

o
s

it
iv

e

BOOM

SIFT

PIXEL

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

% False Positive

%
 T

r
u

e
 P

o
s

it
iv

e

BOOM

SIFT

PIXEL

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

% False Positive

%
 T

r
u

e
 P

o
s

it
iv

e

BOOM

SIFT

PIXEL

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

% False Positive

%
 T

r
u

e
 P

o
s

it
iv

e

BOOM

SIFT

PIXEL

Figure 7. Top row: out-of-plane rotations of the image from Fig. 6(c). Bottom row: ROC curves comparing performance on each out-of-
plane rotation. In all cases BOOM outperforms both PIXEL and SIFT.

ferent lighting angles, and three different poses. In order
to learn illumination invariance we split the photographs
into pairs with different illumination angles. We trained
BOOM on 9 of the subjects (27 image pairs), and tested
with the remaining subject (3 image pairs, one of which
is shown in Fig. 10). ROC plots comparing BOOM, SIFT
and PIXEL are shown in Fig. 9. Again, BOOM is able to
learn the necessary invariance and achieves superior perfor-
mance. Surprisingly, PIXEL outperforms SIFT despite its
simplicity. Since there is geometric transformation between
the images, the raw pixel values are a decent descriptor in
this case.

5. Conclusions & Future Work
We have presented a method that uses machine learn-

ing techniques to create a classifier that decides if a pair of
points in two images is a potential correspondence. While
current approaches to solving the correspondence problem
involve highly engineered feature sets, and many heuristics,
our method learns from labeled examples and uses simple
efficient features. Our approach can thus be trained for spe-
cific tasks or domains, where a general purpose descriptor
would often fail.

The potential drawback in our system is the requirement
of training data. However, there are a few factors that alle-
viate this problem. First, as we saw in Section 4.3, in many
specialized domains realistic training data can be synthe-
sized. Furthermore, during manual labeling, just a few cor-
respondences are needed to compute the geometric trans-
formation between two images. Once this transformation is
known, many more ground truth correspondences can be in-
ferred. Lastly, there has been an increased interest recently
in active learning for vision applications [3], where the sys-
tem asks a user to label only those examples which it will
find useful most informative. This type of method has been
shown to significantly reduce the amount of manual labor
in building a training set.

6. Acknowledgements
This work was funded by NSF Career Grant #0448615,

the Alfred P. Sloan Research Fellowship, NSF IGERT Grant
DGE-0333451, and the Calit2/UCSD Summer Undergradu-
ate Research Scholarship Program. Authors would also like
to thank Nadav Ben-Haim for insightful discussions.

(a) (b) (c) (d)
Figure 10. A test face image from the Yale Face Database with two different illuminations is shown in (a). We compute potential correspondences using
(b) SIFT; (c) SIFT with a distance ratio threshold post-processing discussed in Section 4; (d) BOOM. Because the faces are aligned, non-vertical lines are
incorrect matches. We see that BOOM outperforms both versions of SIFT. Each image is 350× 290 pixels.

References
[1] http://www.cs.ubc.ca/ lowe/keypoints/.
[2] http://www.robots.ox.ac.uk/ vgg/research/affine/.
[3] Y. Abramson and Y. Freund. SEmi-automatic VIsual LEarning

(SEVILLE): Tutorial on active learning for visual object recognition.
CVPR, 2005.

[4] S. Belongie, J. Malik, and J. Puzicha. Shape context: A new descrip-
tor for shape matching. In NIPS, pages 831–837, 2000.

[5] A. Berg and J. Malik. Geometric blur and template matching. In
CVPR, pages I:607–614, 2001.

[6] M. Brown, R. Szeliski, and S. Winder. Multi-image matching using
multi-scale oriented patches. In CVPR, pages I: 510–517, 2005.

[7] R. Cappelli. SFinGe: an Approach to Synthetic Fingerprint Gener-
ation. In International Workshop on Biometric Technologies, pages
147–154, June 2004.

[8] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In CVPR, pages I: 886–893, 2005.

[9] P. Dollár, Z. Tu, and S. Belongie. Supervised learning of edges and
object boundaries. In CVPR, pages II: 1964–1971, 2006.

[10] P. Dollár, Z. Tu, H. Tao, and S. Belongie. Feature mining for image
classification. In CVPR, June 2007.

[11] G. Dorko and C. Schmid. Maximally stable local description for
scale selection. In ECCV, pages IV: 504–516, 2006.

[12] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by
unsupervised scale-invariant learning. In CVPR, pages II: 264–271,
2003.

[13] M. Fischler and R. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography. Communications of the ACM, 24(6):381–395, 1981.

[14] Y. Freund and R. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer
and System Sciences, 55(1):119–139, 1997.

[15] D. Gao and N. Vasconcelos. Integrated learning of saliency, complex
features, and object detectors from cluttered scenes. In CVPR, pages
II: 282–287, 2005.

[16] A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many:
Illumination cone models for face recognition under variable lighting
and pose. PAMI, 23(6):643–660, 2001.

[17] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, June 2000.

[18] M. Jones and P. Viola. Face recognition using boosted local features.
MERL Technical Report TR2003-025, May 2003.

[19] Y. Ke and R. Sukthankar. PCA-SIFT: a more distinctive representa-
tion for local image descriptors. In CVPR, pages II: 506–513, 2004.

[20] W. Kienzle, F. Wichmann, B. Schölkopf, and M. Franz. Learning an
interest operator from human eye movements. In CVPRW, page 24,
2006.

[21] V. Lepetit and P. Fua. Keypoint recognition using randomized trees.
PAMI, 28(9):1465–1479, September 2006.

[22] D. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 60(2):91–110, November 2004.

[23] S. Mahamud and M. Hebert. The optimal distance measure for object
detection. In CVPR, pages I: 248–255, 2003.

[24] K. Mikolajczyk, B. Leibe, and B. Schiele. Multiple object class de-
tection with a generative model. In CVPR, pages I: 26–36, 2006.

[25] K. Mikolajczyk and C. Schmid. Scale and affine invariant interest
point detectors. IJCV, 60(1):63–86, October 2004.

[26] K. Mikolajczyk and C. Schmid. A performance evaluation of local
descriptors. PAMI, 27(10):1615–1630, October 2005.

[27] F. Porikli. Integral histogram: A fast way to extract histograms in
cartesian spaces. In CVPR, pages I: 829–836, 2005.

[28] F. Schaffalitzky and A. Zisserman. Multi-view matching for un-
ordered image sets, or ‘How do I organize my holiday snaps?’. In
ECCV, page I: 414, 2002.

[29] C. Schmid and R. Mohr. Local grayvalue invariants for image re-
trieval. PAMI, 19(5):530–534, May 1997.

[30] G. Shakhnarovich. Learning task-specific similarity. PhD Thesis,
MIT, 2006.

[31] T. Tuytelaars and L. Van Gool. Matching widely separated views
based on affine invariant regions. IJCV, 59(1):61–85, August 2004.

[32] P. Viola and M. Jones. Robust real-time face detection. IJCV,
57(2):137–154, May 2004.

[33] S. Winder and M. Brown. Learning local image descriptors. pages
1–8, 2007.

[34] S. Zhou, B. Georgescu, D. Comaniciu, and J. Shao. Boostmotion:
Boosting a discriminative similarity function for motion estimation.
In CVPR, pages II: 1761–1768, 2006.

[35] Q. Zhu, M. Yeh, K. Cheng, and S. Avidan. Fast human detection
using a cascade of histograms of oriented gradients. In CVPR, pages
II: 1491–1498, 2006.

