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Abstract
In many machine learning applications, precisely labeled data is either burden-
some or impossible to collect. Multiple Instance Learning (MIL), in which train-
ing data is provided in the form of labeled bags rather than labeled instances, is
one approach for dealing with ambiguously labeled data. In this paper we argue
that in many applications of MIL (e.g. image, audio, text, bioinformatics) a single
bag actually consists of a large or infinite number of instances, such as all points
on a low dimensional manifold. For practical reasons, these bags get subsampled
before training. Instead, we introduce a MIL formulation which directly models
the underlying structure of these bags. We propose and analyze the query bag
model, in which instances are obtained by repeatedly querying an oracle in a way
that can capture relationships between instances. We show that sampling more in-
stances results in better classification performance, which motivates us to develop
algorithmic strategies for sampling many instances while maintaining efficiency.

1 Introduction
Traditional supervised learning requires example/label pairs during training. However, in many do-
mains precisely labeled data is either burdensome or impossible to collect. E.g., less effort is required
to specify what digits are present in an image than to accurately delineate their location, a problem
first studied by Keeler et al. [15]. There may also be inherent ambiguity during labeling. The mul-
tiple instance learning framework (MIL), introduced by Dietterich et al. [10], provides a general
paradigm for weakly supervised learning. Instead of example/label pairs, MIL requires unordered
sets of instances, or bags, and labels are assigned to each bag, rather than each instance. A bag is la-
beled positive if it contains at least one positive instance. In recent years MIL has received significant
attention and numerous algorithms and applications have been proposed [19, 1, 24, 4, 23, 7].

In many MIL applications a bag is generated by taking an object, e.g. an image or audio wave,
and splitting it into overlapping pieces, which serve as the instances. However, both the existing
MIL theory and algorithms are underdeveloped for this scenario. E.g., a typical data model used in
classic MIL theory papers [2, 17] assumes that bags are finite and all instances are i.i.d., which is
not appropriate for many of the datasets we consider here. While existing MIL algorithms do not
always explicitly make these assumptions, they do not offer a principled way of dealing with large
or infinite bags. Instead, instances are sampled prior to training. Note that a sampled positive bag
may may actually contain no positive instances. Furthermore, by separating sampling from training,
the two phases cannot be jointly optimized.

These observations inspire us to propose the query bag model1 for MIL. In this model, instances are
obtained by repeatedly querying an oracle in a way that can capture relationships between instances
(e.g. in many applications all instances in a bag lie on a low dimensional manifold). We also propose
to integrate the query bag model directly into existing MIL algorithms. To do so we turn to the
filtering paradigm, where the data is drawn from a continuous stream or oracle [6], and extend these
ideas to MIL with query bags. We show extensive experiments to validate the proposed approach.

1Note that although the terminology is similar to [11], our model and assumptions are quite different.
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Figure 1: Object detection is a typical MIL ap-
plication. In this example a pedestrian is known
to exist in the image but at an unknown loca-
tion. The image can be broken up into multiple
overlapping patches using a sliding window, at
multiple scales and orientations, to create a pos-
itive bag. Note that the number of instances is
essentially infinite, since a sliding window can
change location by some small ε. If we sub-
sample the bag by randomly selecting a limited
number of patches, we run the chance of miss-
ing the object of interest; moreover, relation-
ships between instances are discarded. Instead,
in this work we propose strategies that more di-
rectly take advantage of such bag structure.

There are numerous MIL applications where our model
is appropriate. In computer vision, an image that con-
tains an object at an unknown position and scale can be
partitioned into overlapping sub-images, one of which
will contain the object, either by sliding a rectangular
window [23] or through segmentation [1]. In computer
audition, prior to processing an audio wave can be par-
titioned either in the spatial domain [18] or in the fre-
quency domain [21]. In text processing, a document
can be partitioned into many pieces by using a sliding
window [1]. Similarly, in bioinformatics, a label is of-
ten assigned to a long sequence even though a short
sub-sequence is responsible for a positive label [20].

In these scenarios the number of instances in a bag can
become prohibitively large or even infinite (e.g. if sub-
pixel image window locations are used). The query
bag model is well suited for the above scenarios; in
fact, while surveying the literature we found very few
applications for which it was not well suited (e.g. [10]).

2 The Query Bag Model for MIL
We begin with a review of supervised learning and MIL
with the classic bag model. In standard supervised
learning data consists of instances {x1, ., xn}, xi ∈ X ,
and labels {y1, ., yn}, yi ∈ Y , where the instance/label

pairs are usually assumed to be drawn i.i.d. from some distribution (xi, yi) ∼ Dx,y . The goal is to
learn a classification function h : X → Y that generalizes well to unseen data. In MIL with the
classic bag model data is given in the form {X1, ., Xn}, where each Xi = {xi1, ., xim} is a bag,
with associated labels {Y1, ., Yn}, Yi ∈ {0, 1}. For notational simplicity we assume all bags have
the same cardinality m. A bag is positive if one or more of its instances are positive according to an
unknown classifier h∗:

Yi = max
j∈{1...m}

{h∗(xij)} (1)

Alternatively, to model noisy instance labels, we can write Yi = max{yij}, where yij need not equal
h∗(xij). Typically, the instances/label pairs are assumed to be drawn i.i.d. from some distribution
(xij , yij) ∼ Dx,y , much like in the standard supervised setting.

In the query bag model model, rather than being given n bags withm instances each, we model each
bag as an oracle that can be queried to obtain an arbitrary number of instances per bag. Furthermore,
we design the query model so we can ask for nearby instances.

Each query bag i is represented by an object oi ∈ O (e.g. a large image). To sample an instance
from oi, we must specify a location parameter α ∈ A (e.g. coordinates of an image patch). A sample
xij ∈ X is then generated using a query function Q : O × A → X . We write xij = Q(oi, αij).
Given certain assumptions aboutQ, formalized below, we can queryQ(oi, α+ ε) for small ε ∈ A to
get an instance nearQ(oi, α). The query functionQ and the associated spaces are problem specific,
examples are given in Sec. 2.1.

We can express the set of all instances in a bag i using Xi = {x|x = Q(oi, α), α ∈ A}. Note that
unlike in the classic bag model, this set may be potentially infinite. Likewise, we can define the bag
label for query bags in a manner analogous to Eqn. 1:

Yi = max
α∈A
{h∗
(
Q(oi, α)

)
}, (2)

where h∗ is again an instance classifier that determines the bag labels. In addition, for each bag i, we
associate a distribution Di over A that provides some prior information on where positive instances
are likely to be located. Most often no prior knowledge is available and this distribution is uniform.

Let p̃ be the probability that h∗(Q(oi, αij)) = 1 given that bag i is positive and αij ∼ Di. p̃ is
a measure of the expected informativeness of Di and helps determine the difficulty of the resulting
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MIL problem. Given m independent draws from a positive bag, the probability that all m instances
are negative is (1 − p̃)m. Thus, to determine a bag’s label with confidence δ, we must query m
instances, where:

m ≥ log(1− δ)/ log(1− p̃) (3)

Given query bags, we can convert them to a suitable format for standard MIL algorithms by simply
querying m instances per bag prior to training. We can define a sample of the ith bag, Xi =
{xi1, ., xim} where each xij is generated usingQ(oi, αij), where αij ∼ Di. Note that by sampling,
there is a chance that for a positive bag, Eqn. 1 will no longer hold. This observation suggests that
sampling more instances for each bag is advantageous. We study this in more detail in Sec. 3.

One intuitive interpretation of the query bag model is that all instances in a bag i are noisy ob-
servations of some key instance x∗i . Let α∗i = argmaxα{h∗

(
Q(oi, α)

)
} and x∗i = Q(oi, α∗i ).

We call x∗i the key to bag i – the key need not be unique and is arbitrary for negative bags (since
∀α, h∗(Q(oi, α)) = 0). Regardless, every instance xij in a bag can be written as being some εij ∈ A
away from the key instance: xij = Q(oi, α∗i + εij). If the εij were known we could recover the α∗i
and thus the keys x∗i and the problem would reduce to the standard supervised case. Instead, we can
query noisy observations, where Di is the noise distribution (specifically εij ∼ Di − α∗i ).

Figure 2: Data generation model.

To make the model more tractable, we assume Q is well be-
haved. Typically, we expect Q to at least be continuous w.r.t.
α ∈ A, and often we can additionally assume that Q is dif-
ferentiable. In most of the examples that follow A = Rd and
X = RD where d ≤ D; note that under these conditions,
a bag defines a d-dimensional manifold in RD (cf . Fig. 2).
Knowing thatQ meets these requirements can be useful. E.g.
given a classifier h : RD → [0, 1] that is also differentiable,
we can attempt to find the maximum of h(Q(oi, α)) w.r.t. α
using gradient descent. This also allows us to query the oracle
for nearby instances. Given xij = Q(oi, αij), we can query
an instance x′ij = Q(oi, αij + ε) such that for small ε ∈ Rd, ||xij − x′ij ||2 is small (see Sec. 4).

Datasets where instances lie on low dimensional manifolds have been studied extensively and many
interesting techniques have been proposed to take advantage of their structure. These range from
techniques for estimating distances [22] to algorithms that traverse the manifold during training
[9]. We draw inspiration from this work and propose some effective filtering strategies that take
advantage of the manifold structure in Sec. 4.

2.1 Examples of Query Bags
We now consider some concrete, illustrative examples of query bags. These examples are by no
means comprehensive, rather they are meant to clarify the model and allow us to perform a number
of carefully controlled experiments in Sec. 3.1. For each model we define Q : O × A → X , and
also O,A and X . Remaining details are deferred to the experiments.

Line Bags: A simple case of bags that lie on a manifold is when instances fall on a line. Let
oi = {ui, vi} where ui, vi ∈ RD,A = R1, and the query function beQ(oi, α) = ui +αvi. In other
words,Q(oi, ·) defines a line that extends in direction vi and passes through point ui. Each instance
xij ∈ X = RD is a point on that line.

Hypercube Bags: Under this model each bag i is defined to be a hypercube RD (or a square in
R2) with side length 2r and center ui. Let oi = {ui, r} where ui ∈ RD and r ∈ R, and let
A = [−1, 1]D. The query function is Q(oi, α) = ui + α · r.

Image Translation Bags: Let I represent a large image and x = I(α) a p× p patch cropped from
image I centered at location α ∈ R2. Each image corresponds to a bag and patches cropped from
the image are instances, e.g. for face detection, α∗i for a positive bag i would specify the coordinates
of a face. More formally, A = R2, X = Rp×p, oi = Ii and Q(oi, α) = Ii(α).

The query bag model is appropriate for many typical MIL applications. E.g., it is straightforward
to extend image bags, defined above, to include other image transformations, such as rotation and
scale change, by increasing the dimension of A to account for all degrees of freedom and updating
Q accordingly. Also, recall the various applications discussed in Sec. 1. For both bioinformatics

3



and text processing,A could encode the position and size of a sliding window; for audio processing,
A could encode the frequency bandwidth. Further details are omitted for space.

3 Implications of Bag Size
For the classic bag model the notion of bag size is clearly defined by the number of instances in the
bag, which stays constant for any given bag. On the other hand, for our query bag model the number
of instances in a bag,m, is variable since it depends on the number of instances we decide to sample.
Therefore, one interpretation of bag size in our model is how much we choose to sample the bags.
Alternatively, we could consider the distribution Di to define bag size. For example, consider the
image bag shown in Fig. 1. Di in this case could be uniform over the entire image, or over a smaller
region around the pedestrian (this depends on the data and is out of our control). The bag in the
former case is effectively larger than the latter case. Next we perform some experiments studying
the effects of these interpretations of bag size on the performance of a MIL algorithm.
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Figure 3: Error versus m. (TOP) illustrations of the datasets; for synthetic datasets the black square
designates the positive region, and point color/symbol indicates bag membership. (BOTTOM) Equal error rate
(EER) vs. m. See text for details.

3.1 Experiments: Error versus m
We begin with a set of experiments that study the performance of a MIL algorithm as we increase
the number of instances we sample from each bag. In all experiments we use MIL-BOOST, proposed
by Viola et al. [23]. In Sec. 4 we propose some modifications so MIL-BOOST can work directly with
the query bag model; however, for the experiments that follow we use the original algorithm. To do
this we sample a fixed number of instances m per bag prior to training. We expect performance of
other MIL algorithms to be qualitatively similar.

We measure the effect of varying m on 2 synthetic datasets and 1 real dataset: (1) line bags, (2)
hypercube bags, and (3) image translation bags (with the MNIST image dataset). Thorough details
on how each dataset was generated are given below. All errors reported are bag errors. We estimate
the predicted bag label by sampling 100 instances per bag.

The datasets and plots showing performance averaged over 25 trials are shown in the first three
columns of Fig. 3. As expected, the results show that as m increases error decreases. Furthermore
the MNIST results closely resemble the two synthetic cases, suggesting the query bag model correctly
captures the properties of such data. Since our model and these experiments suggest that sampling
more instances is advantageous, we must consider the computational consequences. In Sec 4 we
propose strategies that allow us to sample many instances while being efficient.

Details for synthetic experiments: The first 2 experiments involve 2D point datasets (X = R2). In
each case h∗(xij) = 1 if xij falls in the square region spanning [0.45, 0.55]2 (the ‘positive region’).
For both training and testing 50 positive and 50 negative bags are used. Decision stumps served as
the weak classifiers. Remaining details follow: (1) For each line bag, ui is sample uniformly from
the positive region for positive bags and from outside it for negative bags; vi is sampled uniformly
from the unit circle (making sure that the resulting line for negative bags does not pass through the
positive region). Di = N (0, 1) for each i. (2) For each hypercube bag, ui is sampled uniformly
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from [0.25, 0.75]2 for positive bags and from outside of this region (but inside [0, 1]2) for negative
bags. Di is uniform over A = [−1, 1]2 and r = 0.2. See Fig. 3, top, for example bags.

Details for MNIST digit experiment: The final experiment was based on a variation of the MNIST
handwritten digits [16]. Each digit is originally a 28×28 image; we pad each with an 8 pixel border
and randomly translate the digit within the resulting 44× 44 image. Each resulting bag Ii contains
256 instances (28×28 patches), one of which is the original image (see Fig. 3). No prior knowledge
is assumed, and thus Di is uniform. We arbitrarily labeled bags containing ‘3’s as positive and the
rest negative. Decision stumps over Haar features served as the weak classifiers as in [23]. We use
100 positive and negative bags for training, and the rest of the data for testing.

3.2 Experiments: Classic Bags
We now briefly review the behavior of classic bags with respect to bag size. Using the classic bag
model, Blum and Kalai proposed a PAC algorithm [5] with sample complexity Õ

(
D2m/ε2

)
(where

D is dimensionality of X , m is the number of instances per bag, and ε is the error). Previous results
reported sample complexity that included even higher powers of m [2, 17]. All of these results
suggest MIL becomes more difficult as the bag size increases. Given the independence assumption
these results are intuitive – the larger the bag, the more difficult it is to identify positive instances in
positive bags. Note that unlike in our model, here we have no control over the value of m.

For comparison, we perform an experiment similar to the ones in the previous section. We generate
synthetic ‘classic’ bags, modeled on the experiment described in Fig. 2 of [19]. We use a setup
similar to the previous synthetic experiments; we generate bags by uniformly sampling m points
from [0, 1]2 and assign the bag a positive label if any of these points fall into the positive region. The
results are shown in the last column of Fig. 3; as is predicted by the PAC bounds, the error goes up
as bag size increases. The more important point, however, is that this bag model is not appropriate
for MIL datasets like the ones descried in Sec. 1.
3.3 Experiments: Error versus p̃
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Figure 4: See text.

Finally, we study the alternate interpretation of bag size for query bags. Re-
call that that the distributionsDi provide prior information on where positive
instances are likely to be located and p̃ quantifies their expected informa-
tiveness. Eqn. 3 suggests that for a fixed bag size m a lower value for p̃
would make learning more difficult, as sampled positive bags are less likely
to contain positive instances. To investigate this, we repeat the line bag ex-
periment, setting Di = N (0, σ) for each i and varying σ. Note that in this
particular setup, σ = 0 implies p̃ = 1, and as σ increases p̃ approaches 0
(as the bag becomes ‘bigger’). Results for multiple values of m and σ are shown in Fig. 4; indeed
increasing σ degrades performance while increasing m improves it. Note that in real applications
we can control m, but the value of p̃ is fixed and dependent on the data.

4 Filtering Instances
In the previous sections we saw that sampling more instances for bags improves the performance
of a trained classifier. We now present some strategies for reaping the benefits of sampling many
instances, while maintaining efficiency.

When training a classifier, we would like to minimize the empirical error over bags. Substituting h
for h∗ in Eqn. 2, we can write this as:

h = argmin
h

n∑
i=1

1[max
α∈A

(
h(Q(oi, α))

)
6= Yi] (4)

This is a challenging optimization for a number of reasons. One of the key difficulties is that finding
the maximum in terms of α may be intractable, especially if A is infinite. Moreover, for practical
reasons we wish to deal with only limited amounts of data at a time.

Recently, Bradley and Schapire [6] introduced a boosting algorithm called FilterBoost which learns
from a continuous source of data. Boosting is well adapted to this scenario because training hap-
pens in stages – weak classifiers are trained sequentially. FilterBoost alternates between training an
additional weak classifier and querying the oracle for more data, using the the latest version of the
overall classifier to evaluate the weights of queried instances.
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MILBoost() FilterInstances()
Input: {o1, ., on},{Y1, ., Yn},{D1, .,Dn}
1: for t = 1 to T do
2: Call FilterInstances(i) for i = 1 . . . n

3: Compute weightswij = ∂L
∂Ht

(
xij
)

4: Train weak classifier ht
ht = argmaxh

∑
ij

(
wijh(xij)

)
5: Find at via line search to maximizeL

at = argmaxa L(Ht−1 + aht)

6: Update strong classifierHt ← Ht−1 + atht

7: end for

Parameters: MEM, SRCH,m, ε,R, F

1: if t > 1 & mod(t, F ) 6= 0 then return
2: if MEM & t > 1 then r = m + 1 else r = 1
3: αij = Di(), xij = Q(oi, αij), for j = r . . . R

4: Compute p(xij) for each j, keep topm instances

5: if SRCH then
6: for j = 1 : m do
7: if p

(
Q(oi, αij + ε)

)
> p(xij) then

8: αij = αij + ε, xij = Q(oi, αij)

9: end if
10: end for
11: end if

Inspired by this work, we make an analogous extension of MIL for the case of query bags. In our
case, however, we query the oracle for additional instances from a given bag i, rather than requesting
additional labeled data (recall that for MIL labels are required only for bags). Therefore, as opposed
to FilterBoost, the number of labels required does not depend on the number of queries to the oracle.

We focus on the MIL-BOOST algorithm, which was originally proposed in [23] and extended in [3].
We begin with a brief review of MIL-BOOST, and then describe our extensions to filter instances
during training.

4.1 MIL-BOOST Review
MIL-BOOST trains a classifier of the form H(x) =

∑T
t=1 atht(x), where ht : X → {−1, 1} is

a weak classifier, such as a decision stump, and at is a scalar weight. Using Friedman’s gradient
boosting framework [14], we can train this classifier to optimize the log likelihood of the data (since
0/1 loss is generally difficult to optimize). For shorthand we define pi ≡ p(Yi = 1|oi), the proba-
bility that bag i is positive. We can write down the log likelihood (defined over bag, not instance,
probabilities) as:

L(H) =
n∑
i=1

[Yi log pi + (1− Yi) log(1− pi)] (5)

We will model the probability of an instance x being positive as p(x) = σ
(
H(x)

)
, where σ(v) =

(1 + exp{−v})−1 is the sigmoid function. What remains is to define the probability of a bag pi as
a function of its instances. In our model with query bags we could write this as:

pi = max
α∈A
{p(Q(oi, α))} (6)

The above is analogous to Eqn. 2. However, as mentioned before, the max over α is difficult to deal
with. If we subsample our bag to get m instances {xi1, ., xim}, we can re-write the above as pmi =
maxj∈{1,...,m}{p(xij)}. Furthermore, we replace the max with a differentiable approximation such
as Noisy-OR ([3] proposes several options for this). To optimize Eqn. 5, we perform gradient descent
in function space. The MIL-BOOST algorithm is summarized above; for details see [23, 3].

4.2 Filtering Strategies
Previously, we observed that when data obeys the query bag model, having more instances per bag
is advantageous. Since the number of candidate instances per bag can be quite large, even infinite,
for practical reasons we are limited to a relatively small number of instances per bag for use during
training. Instead of using a fixed set, we propose querying the data oracle for new instances during
each boosting iteration. In each iteration, we assume we have the computational resources to train
the weak classifiers withm instances per bag. Our goal is to optimize Eqn. 5. To get a good estimate
of the likelihood, filtering is used to select m instances xij for each bag that have high probability
p(xij) given the current classifier Ht =

∑t
k akhk. For negative bags this is similar to traditional

bootstrapping – we want to select the hardest negative examples. For positive bags we want to get
the most “correct” examples. Some cost is incurred for querying the oracle (e.g. cropping a patch
out of an image) and evaluating p(xij). Assume we have the computational resources to evaluate
the probability of R instances per bag and that we can filter instances once in every F iterations of
boosting. Given these constraints, we propose the following filtering strategies.

Random Sampling (RAND): The simplest filtering strategy is to query R > m samples and keep
the m with the highest probability, resulting in O(nR) classifier evaluations (n is the number of
bags). Samples are queried using αij ∼ Di followed by xij = Q(oi, αij).
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Memory (MEM): Instead of sampling a fresh batch of R instances per bag in each iteration, we can
retain the m instances from the previous iteration, sample (R − m) new instances, and then keep
the best m of the combined set (resulting in O(nR) evaluations as before). The classifier changes
between iterations; nevertheless, memory allows high probability instances to accumulate over time.
Search (SRCH): Recall that in many scenarios we expect that given xij = Q(oi, αij) and x′ij =
Q(oi, αij+ε), ‖xij−x′ij‖2 is small for small ε ∈ A. AlthoughH need not be smooth in the technical
sense, it is likely that

∣∣p(x′ij) − p(xij)
∣∣ is also small for nearby instances. Thus, given a high

probability instance xij , we can search for nearby x′ij such that p(x′ij) > p(xij). A straightforward
way to operationalize this search is to test c nearby locations for each instance at offsets {ε1, ., εc} ∈
A, and keep the neighbor with the highest probability. Note that this incurs an additional cost of
O(nmc) classifier evaluations.

We summarize the three strategies (random sampling, memory, and search) in Algorithm 3. Memory
(MEM) and search (SRCH) can be turned on/off, and we can adjust the amount (R) and filtering
period (F ). We emphasize that more sophisticated filtering strategies could be developed, e.g. a
true gradient descent strategy to take advantage of underlying manifold structure of the instances as
opposed to the steepest descent type search described above. However, our goal is to demonstrate
that even simple filtering strategies can result in significant performance gains.

4.3 Filtering Experiments
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Figure 5: Plots showing performance for various filtering strategies (see text) for the MNIST dataset. In each
plot we show the equal error rate (EER) plotted against four different parameters: (A) R, amount of sampling;
(B) m, number of instance per bag during training (only MEM shown); (C) F , the filtering period (low F =
frequent); and (D) T , the number of weak classifiers.

MNIST For this experiment we used the MNIST handwritten digit dataset described in Sec. 3.1.
A = R2 encodes the 2D pixel coordinates of the center of an image patch and Di is set to uniform
as we have no prior information as to where the digit may be located. For SRCH we used four values
of ε = (±1, 0), (0,±1).

Our goal is to measure the effectiveness of various combinations of filtering strategies. We report
the equal error rate (EER), (the point where false positive equal false negatives), repeating each
experiment 10-25 times depending on the measured variance, and plotting the averaged results with
standard deviation bars. We measured filtering performance with MEM on/off and SRCH on/off,
while sweeping through the parameters R (sampling amount), m (bag size), F (filtering period) and
T (number boosting iterations). In each experiment we keep 3 of the 4 parameters fixed at their
default values of 16, 4, 1, 64, respectively, and sweep through the fourth. Where appropriate, we
also include performance without filtering (NONE). Results are shown in Fig. 5.

In Fig. 5(A) we show the effect of altering R, the number of instances queried per bag per iteration.
Both MEM strategies converge to low error when R = 8, while the other strategies take up to
R = 128. SRCH is beneficial for random sampling but makes a smaller difference when MEM is
turned on. Fig. 5(B) shows the advantage of filtering (MEM) versus sampling bags and keeping them
fixed during training. Both strategies converge to low error as m increases, however, with filtering
an eighth of the instances (m = 8 vs. m = 64) are required during training. Fig. 5(C) shows in
more detail the effects of filtering period F (lower values of F result in more frequent sampling).
Frequent filtering is beneficial for all strategies, however the improvement is most significant for
MEM strategies (see Sec. 4.4 for discussion).

In Fig. 5(D) we plot error vs. the number of boosting iterations T . These results are particularly
interesting, as without MEM error actually increases for large values of T . This is true also for
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training error (not shown). This behavior is counterintuitive as boosting is know to have excellent
generalization, with error decreasing as T increases [13]. We observed that this behavior is not
as severe given larger R (results not shown). Essentially, as the classifier becomes more refined its
response becomes more peaked and random sampling with lowRmay not yield any high probability
instances for a given bag, thus preventing the classifier from converging. Using memory alleviates
this problem by guaranteeing high probability instances are retained (more details in Sec. 4.4).
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Figure 6: Plots showing performance for various
filtering strategies (see text) for the INRIA dataset.
In each plot we show the miss rate at a false positive
rate of 10% plotted against two parameters: (A) R,
amount of sampling; (B)m, number of instance per
bag during training.

INRIA Pedestrians The MNIST dataset is conve-
nient because it is not particularly large or difficult
and it allowed us to study the behavior of the al-
gorithm in a well controlled manner. To ensure
that the general trends of this behavior hold for
a more challenging dataset, we repeat similar ex-
periments with the INRIA pedestrian dataset [8].
This dataset is currently a standard benchmark for
pedestrian detection, and is used to evaluate many
recent state of the art systems (e.g. [12]). We use a
setup analogous to the MNIST experiments – we re-
sized these images to be 80× 40 pixels in size, and
then padded both the negative and positive images
by 30 pixels in each direction by replicating the
border. The number of possible instances for each
bag is therefore 3721. Unlike the MNIST dataset,
here it would be impossible to sample the bags exhaustively and store this in memory2. We use
500 positive and 500 negative bags for training. The default parameters used are as follows:
T = 128, F = 8,m = 4, R = 16. Results are shown in Fig. 6. We see that the general trends
we observed with the MNIST data appear in these results as well.

4.4 Analysis
We now consider possible explanations for the results discussed above. Let Lm(H) be defined as in
Eqn. 5, but with pmi replacing pi. It is easy to show that as m → ∞, Lm(H) → L(H) for a fixed
classifier H . This follows from the fact that pmi → pi. This yet again suggests that training with
more sampled instances is advantageous.

Now let us consider some of the filtering strategies proposed above, momentarily assuming the
classifier H is fixed during training (obviously this is not the case in the algorithm). For RAND, we
are drawing novel instances in each iteration, and there is no guarantee that at time step t + 1 our
estimate of the likelihood Lm(H) would be any closer to L(H) than at time t. With MEM, however,
during every time step we are effectively evaluating an additional (R −m) new instances per bag.
Therefore, as t→∞, Lm(H)→ L(H).

In practice, however, at every time step t the classifier H changes slightly. This makes it difficult to
prove convergence for MIL-BOOST with filtering. In particular, note that for two different classifiers
H and H̃ , Lm(H) > Lm(H̃) does not imply L(H) > L(H̃). In other words, if the boosting
algorithms finds a local maximum of Lm, it is not necessarily the local maximum of the true log
likelihood L. However, the above analysis provides some intuition as to which filtering strategies
should work, in particular, it helps explain why MEM is essential.

5 Conclusions
In this work we argued that the majority of MIL applications in recent literature have diverged from
the assumptions and data generation models associated with the original MIL formulation. We pre-
sented the query bag model, which more accurately fits the data in these applications. We showed
that sampling more instances for each bag is advantageous and proposed a number of filtering strate-
gies for dealing with a large number of samples. These strategies open the door to effectively dealing
with a range of MIL applications in computer vision, audition, text, bioinformatics, and other do-
mains that previously required heavy sampling of bags and thus resulted in suboptimal performance.
We envision developing more sophisticated techniques for specific domains thus extending the ef-
fectiveness and applicability of the MIL framework.

2Storing the 2500 dimensional feature vectors for this many instances would require over 60GB of memory.
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