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Abstract

Numerous ‘non-maximum suppression’ (NMS) post-processing schemes have been
proposed for merging multiple independent object detections. We propose a general-
ization of NMS beyond bounding boxes to merge multiple pose estimates in a single
frame. The final estimates are centroids rather than medoids as in standard NMS, thus
being more accurate than any of the individual candidates. Using the same mathematical
framework, we extend our approach to the multi-frame setting, merging multiple inde-
pendent pose estimates across space and time and outputting both the number and pose
of the objects present in a scene. Our approach sidesteps many of the inherent challenges
associated with full tracking (e.g. objects entering/leaving a scene, extended periods of
occlusion, etc.). We show its versatility by applying it to two distinct state-of-the-art pose
estimation algorithms in three domains: human bodies, faces and mice. Our approach
improves both detection accuracy (by helping disambiguate correspondences) as well as
pose estimation quality and is computationally efficient.

1 Introduction
Accurate pose estimation from video is key to many applications such as action recogni-
tion [6, 23], motion capture [20] and human computer interaction [21]. By pose here we
mean the parameters of a model that describes the configuration of an object in the image or,
alternatively, the location of a number of object parts or landmarks in the image.

Data driven approaches for pose estimation are maturing and starting to show impressive
results on a broad range of recognition tasks [7, 13, 25, 26]. These methods naturally output a
set of pose hypotheses and rely on ‘non-maximum suppression’ (NMS) techniques to merge
detections that are associated with the same objects. NMS is well developed for the case of
object detection where the goal is to merge rigid object locations (bounding boxes) [9, 11].
However, it is still unclear how to extend it to flexible pose estimates. Applying standard
NMS independently to each part location as in [25, 26] fails to explicitly leverage the higher
dimensionality of pose parameterization.
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Figure 1: Our approach, Pose-NMS, merges together pose estimates in space and time, out-
putting a final set of estimates more accurate than any of the individual ones. This is achieved
by performing a robust average while simultaneously solving the correspondence problem.

Our first contribution is a principled framework for merging multiple pose estimates in
a single frame. This can be viewed as a generalization of NMS beyond bounding boxes.
Our proposed approach makes minimal assumptions about the underlying method for pose
estimation and generates a final set of pose estimates that are more accurate than any of
the individual ones. We achieve this by performing a robust average while simultaneously
solving the correspondence problem between pose estimates generated by multiple objects.

Our second contribution is to extend our approach to the multi-frame setting using the
same mathematical framework, resulting in pose estimates that are further improved. While
our approach is inspired by the recent success of ‘tracking by detection’ approaches, we
sidestep many of the inherent challenges associated with full tracking (e.g. objects entering
and leaving a scene, extended periods of occlusion, etc.). Instead we present a principled,
simple approach for merging multiple independent pose estimates across space and time and
outputting both the number and pose of the objects present in a scene, see Fig. 1.

By formulating the task in a unified optimization framework we derive an efficient and
highly effective approach well suited for computing pose estimates ‘on the fly’ given short
video snippets during which the same objects are observed. Our approach, Pose-NMS, makes
minimal assumptions about the underlying pose estimation method, making it possible to use
any frame-by-frame pose estimation approach and parameterization type.

In Sec. 3 we showcase the versatility of Pose-NMS by applying it to two distinct state-of-
the art pose estimation approaches: Deformable Part Models (DPM) for body pose estima-
tion [25] and Cascaded Pose Regression (CPR) [7, 13]. We collected more than 1,000 short
video clips from scenes containing three different object types and benchmark our method
on three tasks: human body pose estimation, face landmark estimation, and animal pose
estimation. Pose-NMS improves both detection accuracy and pose estimation quality in all
three cases compared with standard techniques. Code for our approach is available online.

1.1 Related Work
When estimating pose from video instead of single images, previous work can be divided
into two main categories: 1) approaches that couple together the tracking and pose estimation
stages directly and 2) approaches that first estimate pose independently frame-by-frame and
subsequently enforce temporal smoothness across frames.
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The first category dominates for markerless human motion-capture and 3D pose esti-
mation from several cameras [20]. Examples include [22], where the authors propose to
perform tracking and pose estimation simultaneously through a factored-state Hierarchical
HMM, or [18], which proposes to integrate single-frame pose recovery and temporal integra-
tion by combining a motion model and observations in a Viterbi-style maximum likelihood
approach. These approaches are specifically tailored for each task and are not easily gener-
alized to different pose estimation tasks.

The second category of approaches, more popular in standard 2D pose estimation from
monocular video, consist in extending single image detection approaches to video by en-
forcing temporal consistency across frames. In this context, popular “tracking by detec-
tion” techniques can be used. These compute consistent object trajectories over time from
single-frame detections [1, 2, 3, 5, 8]. Tracking by detection is quite effective, however, its
extension from bounding boxes to flexible pose parameterizations is less well developed.

2 Proposed approach
We now describe our approach in detail. Given a video containing T frames, we assume a
pose detector is applied to each frame 1 ≤ t ≤ T independently and returns pose estimates
X t = {xt

1, . . . ,x
t
nt |xt

i ∈ RD} and their associated confidence scores St = {st
1, . . . ,s

t
nt |st

i ∈ R},
where nt is the number of estimates in frame t. Estimates xt

i are parametrized using D
dimensions, which vary depending on the task, and may include angular values. The goal is
to compute trajectories Y t = {yt

1, . . . ,y
t
K |yt

k ∈ RD} that are close to the raw pose estimates in
each frame but also smooth over time. Here K is the number of objects present, which needs
to be estimated.

2.1 Single-frame
We start by discussing how to merge multiple pose estimates in a single frame (fixed t)
assuming that the number of objects K is known. The core of our approach is to reduce the
problem to a robust clustering of the raw pose estimates which results in a more accurate
estimate of each object’s pose while simultaneously solving the correspondence problem.

Let d(x,y) = ‖x− y‖2
2 be the squared Euclidean distance. We define the loss of predic-

tions Y t = {yt
k ∈ RD,1≤ k ≤ K} in frame t given X t and St as:

Lspace(Y t) =
1
st

nt

∑
i=1

min
k

d(xt
i ,y

t
k)s

t
i, where st =

nt

∑
i=1

st
i. (1)

Lspace encourages the predictions yt
k to be close to pose estimates xt

i . One shortcoming of
the above loss function is that a single prediction yt

k can account for xt
i that are fairly far apart

(and conversely that distant xt
i can affect yt

k). yt
k should be able to account for a large number

of nearby detections but not any distant ones. We can modify the loss function accordingly
by defining a bounded distance measure dbd(x,y) = min(z,‖x− y‖2

2). dbd is like the squared
Euclidean distance except it attains a maximum value of z. The resulting loss is:

Lspace(Y t) =
1
st

nt

∑
i=1

min
k

dbd(xt
i ,y

t
k)s

t
i. (2)

The above is the same as the loss in Eqn. (1) except d has been replaced by dbd . Now, once
an estimate xt

i is far enough from any location yt , it simply attains the maximum penalty z
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and no longer affects yt
k. The constant z is application dependent. In practice we always set

z to the average object width in pixels.
We now discuss intuition behind the optimizing procedure for Lspace. First, consider

the first loss given in Eqn. (1). Note that this is precisely the loss of (weighted) k-means
clustering with k = K and Y t being the cluster centers. In other words, if we assume K is
known, we could run weighted k-means giving us a reasonable solution for a single frame t.
However, upon replacing d with the bounded distance dbd , k-means is no longer applicable.

We describe a simple variation of k-means (which we call bounded k-means) for the
loss defined in Eqn. (2). We drop the t superscript for the following discussion. In every
phase of k-means, first cluster memberships are determined, and then each cluster center is
set to the mean of the points belonging to the cluster. In standard k-means, a point xi belongs
to cluster k if d(xi,yk) < d(xi,y j),∀ j 6= k. In bounded k-means, we use the same update
procedure, except xi belongs to cluster k if both d(xi,yk)< d(xi,y j),∀ j 6= k and d(xi,yk)< z.

It is well known that given a set of points xi with associated weights wi, setting µ =

∑i wixi/∑i wi minimizes ∑i wi ‖xi−µ‖2
2 = ∑i wid(xi,µ). It is this property that results in a

decrease of the loss in each phase of k-means. The above no longer holds for dbd . However,
suppose that for a given y, d(xi,y)≤ z ∀i. Now, it is simple to show that using the weighted
mean µ of xi, ddb has the property that: ∑i widbd(xi,µ)≤ ∑i widbd(xi,y). Proof:

∑
i

wi min(z,‖xi−µ‖2
2)≤∑

i
wi ‖xi−µ‖2

2 ≤∑
i

wi ‖xi− y‖2
2 = ∑

i
wi min(z,‖xi− y‖2

2). (3)

The last step follows because we only considered y for which d(xi,y)≤ z.
In other words, replacing y with the weighted mean µ of the xi that are within a distance

of z of y decreases the loss (or keeps it constant), resulting in a decrease of the loss in each
phase. Note, however, that µ is not guaranteed to be the true minimum of ∑i widbd(xi,µ);
it is only guaranteed to be superior to any y with d(xi,y) ≤ z ∀i. Hence, although each step
of bounded k-means is guaranteed to decrease the loss, it is not guaranteed to be optimal
(in standard k-means each step is optimal although the alternating optimization procedure is
not). Running bounded k-means with different initializations alleviates this problem.

Finally note that if the pose includes angular data, the distance function and optimization
procedure need to be further modified, see supplementary material for details.

2.2 Multi-frame
In video, we need to ensure that pose predictions are consistent across frames. To extend the
approach discussed above to multiple frames, we add a second term to the loss, encouraging
predictions of the same object yt

k to remain close together between adjacent frames:

Ltime(Y t−1,Y t) =
1
K

K

∑
k=1

d(yt−1
k ,yt

k), (4)

where d is again the squared Euclidean distance. Putting things together, the overall loss is:

L(Y ) =
T

∑
t=1

Lspace(Y t)+λ

T

∑
t=2

Ltime(Y t−1,Y t). (5)

λ is user specified and controls the amount of temporal smoothing. Setting λ = 1 results in
the spatial and temporal terms receiving about equal importance.
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We now discuss the full optimization procedure for the loss in Eqn. (5). Given an initial
solution Y , we iteratively refine Y at a single frame t in a manner that guarantees the loss
L(Y ) will decrease. For notational simplicity assume 1 < t < T . We can rewrite Eqn. (5) to
include only terms that depend on Y t , while keeping the rest of Y fixed, as:

L(Y t) =
1
st

nt

∑
i=1

min
k

dbd(xt
i ,y

t
k)s

t
i +λ

1
K

K

∑
k=1

(
d(yt

k,y
t−1
k )+d(yt

k,y
t+1
k )

)
. (6)

Next, we replace mink with an assignment at
ik and dbd with d:

L′(Y t) =
st

st z+
1
st

nt

∑
i=1

at
ikd(xt

i ,y
t
k)s

t
i +λ

1
K

K

∑
k=1

(
(d(yt

k,y
t−1
k )+d(yt

k,y
t+1
k )

)
(7)

where at
ik = 1

[
d(xt

i ,y
t
k)≤ d(xt

i ,y
t
j) ∀ j and d(xt

i ,y
t
k)< z

]
. (8)

In the above 1 is the indicator function and st is the sum of scores of all points xt
i not assigned

to any cluster. As the assignments at
ik are now fixed, L′ serves as an upper bound on L, that

is L(Y t)≤ L′(Y t). Instead of optimizing L(Y t) directly w.r.t. Y t , which is difficult because of
the nonlinearity introduced by the min operator, we instead optimize the upper bound L′(Y t).

Although we omit details here, L′(Y t) can be easily re-written in the following form:

L′(Y t) = ∑
k

∑
j

s̃k
jd(y

t
k, x̃

k
j), (9)

where s̃k
j and x̃k

j are set appropriately. Once in this form, we can compute:

yt
k = ∑

j
s̃k

j x̃
k
j

/
∑

j
s̃k

j, (10)

which is guaranteed to minimize L′(Y t). For further intuition behind the approach, and its
relation to k-means, we refer readers to Sec. 2.1. The above gives us a procedure to start
with any random solution Y and improve it gradually one frame at a time. We alternate
iterating forward (optimizing from t = 1 to t = T ) and backward (from t = T to t = 1) until
convergence (typically a few passes suffices). To avoid local minima, several restarts with
random initializations are performed, similarly to standard k-means.

2.3 Variable K
Our approach can be extended to automatically estimate the number of objects K present
in a given image or video by iteratively estimating one trajectory at a time. We set K = 1
and use the approach described in Sec. 2.2 to find the single best pose trajectory given X
and S. Then, all estimates xt

i and corresponding scores st
i near the returned trajectory Y are

removed and the method iterates, finding a single trajectory at each round and stopping when
the average number of remaining estimates is less than 1 per frame. Estimates are removed
if d(xt

i ,y
t)< z. We refer to our full approach as Pose-NMS. Our Matlab code runs between

10-25 fps on a standard 3.4Ghz CPU, depending on K and D. Source code is available online.
Pose-NMS is a versatile approach. It can be used to merge pose estimates in single im-

ages or in short sequences, controlling the desired amount of temporal consistency through
parameter λ . In scenarios where the number of objects is fixed over extended periods of time
(e.g. animals in a cage), it can be used to perform joint optimization over K > 1, resulting
in an effective ‘tracking by repeated pose estimation’ approach. For more classical track-
ing scenarios (variable number of objects entering/leaving the scene), the iterative method
described above can be used to find all relevant trajectories in short sequences.
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3 Results
We collected 1,000 short clips to benchmark our approach on three different tasks: human
bodies (Sec. 3.1), human face landmarks (Sec. 3.2), and mice (Sec. 3.3). We manually
annotated pose on the last frame of each clip to measure how much pose estimation gets
improved on frame T given the previous T −1 frames. Clip lengths vary from 1-10s.

To measure performance, we decouple object detection from pose estimation since pose
estimation can only be correct if the object has been correctly detected. For detection, we
convert pose estimates back to bounding boxes (biggest bounding box containing all object
parts) and use the standard PASCAL [15] criteria which considers as true positives all detec-
tion bounding boxes overlapping ground-truth bounding boxes by more than 0.5. Then, we
report pose estimation quality only on the objects correctly detected. Note that reported pose
quality will depend on detector recall and cannot be fully separated from detection accuracy.

We briefly discuss tested approaches next:
• NMS: Standard NMS scheme based on bounding boxes [25]. Does not take into ac-

count pose or temporal information during non-maximum suppression.
• TrackByDetect: NMS on bounding boxes followed by temporal smoothing of the

remaining pose estimates using Pose-NMS. Serves as a stronger baseline due to use of
temporal and pose information; however, less information is available for Pose-NMS
due to the initial NMS step. Related to standard tracking-by-detection schemes.

• Pose-NMS (T=1): Single frame variant of Pose-NMS. Applies to images or videos.
• Pose-NMS: Our full approach. In all cases, during multi-frame optimization we used

λ = 1, which results in a good trade-off between detection accuracy and pose trajectory
smoothness. All other parameters are kept constant unless otherwise noted.

3.1 Buffy stickmen
The Buffy Stickmen dataset [14, 16] is one of the most widely used datasets for human body
pose estimation. Pose is encoded as the beginning/end points of 5 body parts (head, shoulder,
elbow, wrist and hip), converting humans into ‘stick’ figures, see Fig. 2(c). All frames are
obtained from videos of a TV show; however, the original dataset does not contain any
temporal information. Instead, we use it to compare standard NMS with our single-frame
approach (T =1). In order to benchmark on video, we extend the Buffy Stickmen dataset by
collecting 50 short clips using the same episodes as the original test set.

For the pose estimation method, we use the deformable part model from Yang et al. [24,
25], the current state-of-the-art on the Buffy dataset. We downloaded the latest version of
the code directly from the author’s website and trained it on the training set using the default
settings. The original approach has an NMS step in which all redundant pose candidates are
removed. We replace this step by our approach and compare results. Yang et al. [25] also
provided ground-truth bounding boxes to be able to report detection performance correctly.

In [25], a new pose quality metric called Percentage of Correct Keypoints (PCK) is pro-
posed to improve the original Percentage of Correct Parts (PCP) [16]. PCK is similar to
the protocol used in the PASCAL Person Layout Challenge [15]. It assumes that the per-
son bounding box is given at test time and considers a keypoint as correctly detected if it
falls within 0.2 ·max(h,w) pixels of the ground-truth keypoint, where h and w are the height
and width of the image. To avoid assumptions about object locations being given at test
time, we only report PCK back on the people correctly detected, where detection accuracy
is computed from bounding boxes as explained before.
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Figure 2: Results on (static) Buffy Stickmen dataset. Pose-NMS performs slightly better for
detection but consistently improves the quality of pose estimates around 5%.
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Figure 3: Parameter trade-offs in terms of detection accuracy (F1-Score, blue) and pose esti-
mation quality (PCK, green) on the Video Buffy dataset. (a) Keeping all pose candidates (no
NMS) prior to applying Pose-NMS improves detection accuracy while maintaining similar
pose quality. (b,c) Increasing temporal smoothing λ and the amount of prior temporal infor-
mation T trades-off detection accuracy and pose quality. We kept all original pose candidates
and used λ = 1 and T = 50 in all reported experiments.

3.1.1 Original Buffy (no temporal information)

The testing part of the dataset consists of 276 pose-annotated video frames over 3 episodes
of the Buffy TV show. Fig. 2 shows the results of our single-frame approach (T =1) against
standard NMS. Pose-NMS reaches 3% higher precision at similar recall rates. More impor-
tantly, it consistently improves the quality of pose estimates by more than 5% on all body
parts. This shows that Pose-NMS, unlike standard NMS, is capable of generating a final set
of pose estimates that are more accurate than any of the original ones.

3.1.2 Video Buffy

To better illustrate how our approach can improve results when full temporal information
is available, we extended the original Buffy Stickmen dataset with video. We collected all
uncut scenes with a duration longer than 2s (50 frames) containing people standing from the
same 3 episodes used for testing in original dataset, resulting in 50 clips.

Pose-NMS significantly improves detection accuracy while maintaining similar pose
quality when compared with running NMS prior to our multi-frame optimization, see Fig.
3(a). This shows the benefits of our approach compared with standard techniques. Strength-
ening temporal consistency by increasing λ beyond λ = .1 decreases detection accuracy
(recall decreases as objects that are not consistently detected across frames are suppressed),
but increases pose estimation quality, see Fig. 3(b). The effect of varying number of frames
T for Pose-NMS is shown in Fig. 3(c). In contrast to increasing λ , increasing the available
temporal information improves detection accuracy (all observed objects get included) but
somewhat degrades pose quality.
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Figure 4: Results on the Video Buffy dataset. Single-frame Pose-NMS improves pose quality
around ∼5% at similar detection accuracy compared with standard NMS. Full (multi-frame)
Pose-NMS improves detection accuracy 6% and maintains similar pose quality compared to
running NMS prior to our tracking phase.

Fig. 4 shows the full results on the Video Buffy dataset. Pose-NMS with (T =1) improves
pose quality around ∼5% at somewhat lower detection accuracy compared with standard
NMS. Full Pose-NMS improves detection accuracy 6% and maintains similar pose qual-
ity compared to TrackByDetect. Adding multi-frame reasoning to Pose-NMS significantly
improves detection accuracy while achieving similar pose quality.

3.2 Faces
We next test the performance of Pose-NMS on face landmark estimation ‘in the wild’. Since
to the best of our knowledge there is no currently available ‘in the wild’ face landmark
dataset that includes video, we collected a new dataset. We downloaded 33 HD movies shot
on the streets of 23 different countries from YouTube from the series ‘50 people one ques-
tion’, where 50 random people are selected and interviewed. They represent a realistic and
challenging benchmark for face landmark estimation due to the variety of filming conditions,
locations and people’s expressions. From these 33 ten minute films we extracted 450 clips
with durations varying between 1 and 10 seconds and annotated face landmarks on the final
frame of each clip using 29 keypoints as in the LFPW dataset [4].

For the face landmark estimation method we use Cascaded Pose Regression (CPR),
first introduced in [13] and later extended to be the current state-of-the art on several face
datasets [7]. As code is not publicly available, we reimplemented the method ourselves,
and trained it using the 2K faces from the training set of the HELEN dataset [19]. Since
this method requires the face bounding box to be previously detected, we trained a face
detector using code from a state-of-the-art pedestrian detector [12] and 4K faces from the
Multi-PIE [17] and HELEN [19] datasets.

The usual procedure for CPR given a single image is to initialize it from the most con-
fident bounding box returned by the face detector after NMS. Instead, when applying our
approach, we run CPR starting from each bounding box detected around the object indepen-
dently and keep all resulting pose estimates.

Fig. 5 shows results. The metric used to report landmark estimation quality is the aver-
age distance between all estimated landmarks and ground-truth landmarks, normalized with
respect to the interocular distance. Pose-NMS improves both detection and pose estimation
2-3%. We only report pose quality of correctly detected faces, as before. The number of
pose estimation failures is reduced by 5% (not shown), using 0.1 as the threshold as pro-
posed in [10]. This again demonstrates that Pose-NMS effectively uses all pose candidates
to output a more precise final pose estimation.
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Figure 5: Results on Faces and Mice. Our approach improves detection by 3-7% and pose
estimation quality between 2-7%. See text for details.

3.3 Mice

As a third and final task, we test our approach for estimating the pose of two mice. We
use videos from the Caltech Resident-Intruder Mouse (CRIM13) dataset, published in [6].
These videos represent a challenging task for pose estimation due to the high amount of inter-
object occlusions that result from the frequent social interactions between the two mice. We
downloaded the 133 ten minute top-view testing videos from which we extracted 550 clips
ranging from 1-10s in duration. For each, we annotated the final frame by placing direction
sensitive ellipses around each mouse body as in the original work from [13], see Fig. 5.

As for faces, we use Cascaded Pose Regression (CPR) [13] for pose estimation, and
code from [12] as the object detector (both trained on frames from the 104 training videos
of CRIM13). As before, we run CPR starting from each bounding box around the object
independently and keep all resulting pose estimates. The metric used to report performance
is the distance between the estimated and ground-truth ellipses, normalized with respect to
human annotator’s variance, such that human error would be equal to 1, as proposed in [13].

We show results in Fig. 5. Pose-NMS improves both detection accuracy and pose quality
by 7%. The number of pose estimation failures are reduced by 7% (using 5 as threshold),
demonstrating once again the benefits of our approach.

4 Conclusions

We proposed a principled framework for merging multiple independent pose candidates both
in a single frame and across multiple frames by performing a joint optimization. Our appoach
generates a final set of pose estimates that are more accurate than any of the original ones.
In scenarios where the number of objects is fixed over extended periods of time, Pose-NMS
can be used as an effective ‘tracking by repeated pose estimation’ approach.

Our proposed approach makes minimal assumptions about the underlying pose estima-
tion method resulting in a highly efficient, versatile and effective method. We used it together
with two distinct state-of-the art pose estimation approaches on three different pose estima-
tion tasks, showing that it improves both the detection accuracy as well as pose estimation
quality. All source code is available online.
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