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1 Addendum
This document is meant to serve as an addendum to [1], published at BMVC 2009. The
purpose of this addendum is twofold: (1) to respond to feedback we’ve received since publi-
cation and (2) to describe a number of changes, especially to the non-maximal suppression,
that further improve performance. The performance of our updated detection increases 5%
to over 91% detection rate at 1 false positive per image on the INRIA dataset, and similarly
on the Caltech Pedestrian Dataset, while overall system runtime for multiscale detection
decreases by 1/3 to just under 1.5s per 640×480 image.

We begin by rectifying an important omission to the related work. Levi and Weiss had an
innovative application of integral images to multiple image channels quite early on, demon-
strating good results on face detection from few training examples [4]. This work appears to
be the earliest such use of integral images, indeed the authors even describe a precursor to
integral histograms. Many thanks to Mark Everingham for sending us this reference.

1.1 Channels and Features: Additional Experiments
We start by repeating all our original experiments over ten random trials to ensure the results
are statistically significant (in our original presentation only a single trial was used for each
experiment). As before we use use false positive per window (fppw) curves for these experi-
ments and switch to per image measures when comparing to other methods in the literature.
In each trial we vary the pool of random features (the training and testing data is kept con-
stant). Results averaged over the ten trials, along with standard error bars, are shown in Fig.
4 toward the end of this document. They are qualitatively unchanged from before (compare
to Fig. 4 in [1]) and we observe that the curves are quite stable.

Feature size: Recall that the candidate features are generated by randomly choosing
both the channel index and rectangle. In our original experiments we enforced that random
rectangles have area of at least 25 pixels to avoid the feature pool from being dominated by
small rectangles. It turns out that allowing smaller rectangles has no impact on performance,
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(a) min rectangle area (b) min width/height (c) max width/height

(d) channel shrinking (e) gradient normalization (f) joint gradient channels

Figure 1: Additional evaluation of channel features, see text for details.

see Fig. 1(a). To achieve good performance, only intermediate size rectangles are necessary:
in Fig. 1(b) and Fig. 1(c) results are shown where the minimum and maximum rectangle di-
mension, respectively, was limited to a given size. Removing all small rectangles (width or
height below 8 pixels) or large rectangles (width or height above 16 pixels) did not affect per-
formance; however, removing intermediate size rectangles severely degraded results. Note
that these results are generally consistent with the work of Ullman et al. [7] who showed that
visual features of intermediate complexity are necessary for accurate classification.

Shrinking channels: As small features are not necessary for good performance, we hy-
pothesized that we could shrink the channels prior to computing the integral images without
loss of accuracy. Indeed, shrinking the channels by a factor of 4 along each dimension does
not adversely affect performance, see Fig. 1(d). The resulting speedup of the integral channel
computation is significant, the overall system runtime for multiscale detection decreases by
1/3 to just under 1.5s per 640×480 image. We emphasize that we shrink the channels rather
than the original image (please refer to the related discussion on pre and post-smoothing).

Gradient normalization: Gradient normalization plays an important role in many image
descriptors, including HOG and SIFT. We implemented a very simple and fast L1 normal-
ization scheme: the gradient magnitude at each pixel is divided by the sum of the gradient
magnitude in the surrounding window. Results for various window sizes are shown in Fig.
1(e); although the effect is small, some normalization (norm>0) is slightly better then none.

Joint gradient channels: Inspired by classic work in texture recognition of Haralick
et al. [2], a number of recent papers have experimented with higher order pixel statistics
for pedestrian detection [3, 6]. Haralick et al. [2] captured texture statistics by computing
co-occurrence statistics between pairs of nearby pixels, pooling the results over the image,
and deriving texture measures from the resulting co-occurrence matrices. Schwartz et al. [6]
used these co-occurrence features directly for pedestrian detection and addressed reducing
their dimensionality prior to SVM training. In [3], the authors propose using gradient local
auto-correlation (GLAC) features for capturing joint gradient statistics.

We attempted to incorporate the GLAC features [3] minus the spatial pooling step into

Citation
Citation
{Ullman, Vidal-Naquet, and Sali.} 2002

Citation
Citation
{Haralick, Shanmugam, and Dinstein} 1973

Citation
Citation
{Kobayashi and Otsu} 2009

Citation
Citation
{Schwartz, Kembhavi, Harwood, and Davis} 2009

Citation
Citation
{Haralick, Shanmugam, and Dinstein} 1973

Citation
Citation
{Schwartz, Kembhavi, Harwood, and Davis} 2009

Citation
Citation
{Kobayashi and Otsu} 2009

Citation
Citation
{Kobayashi and Otsu} 2009



DOLLÁR, et al.: INTEGRAL CHANNEL FEATURES – ADDENDUM 3

our integral channel framework. Unfortunately their use did not improve performance (see
Fig. 1(f)). Nevertheless, we give details below for completeness. The first step is to compute
gradient magnitude and orientation, quantized into D bins (we use D = 6 throughout). The
computation is identical as for the standard gradient histograms. Next, at each location x, we
take the two pixels at locations x+d and x−d for a fixed direction d and store the minimum
of their gradient magnitudes at location x in one of D2 channels, as determined by their joint
orientation. Actually, as in [3], we used bilinear interpolation to place the gradient magnitude
in up to four channels. Also, as in [3], we used four direction d: (0,r),(r,0),(r,r),(−r,r) for
a fixed radius r, resulting in 4D2 = 144 image channels. To reduce memory usage we shrunk
all channels by a factor of 4 (see above). Results for various setting of the radius are shown
in Fig. 1(f). As stated above performance does not improve when the joint channels are
included and actually begins to degrade for large radii. It is not clear why the joint features
are not effective, lack of a sophisticated normalization scheme may have played a role.

1.2 Full Image Results: Additional Experiments
For all subsequent experiments we use a re-trained classifier with 6 parameters changed
from the default configuration in order to maximize performance. We used: (1) LUV color
channels, (2) pre-smoothing with r = 1, (3) 2000 weak classifiers, (4) 30,000 candidate
features for training, (5) channels shrunk by a factor of 4, and (6) gradient normalization
with a radius of 4. The resulting classifier achieves over 93% detection rate at 10−4 fppw,
and about 90% at 10−5 fppw. We refer to the resulting method as ChnFtrs. Note that only
(5) and (6) are different from the setting used for the final classifier in [1] and per-window
performance is only slightly improved. The new classifier is, however, about 33% faster.

1.2.1 Non-Maximal Suppression

Figure 2: Evaluation of non-maximal suppression, see text for details.

A number of minor tweaks to the NMS raised full-image performance from about an
86% detection rate at 1 false positive per image (fppi) to over 91%. First, we found that
cropping the extra padding around the detected bounding boxes prior to NMS rather then
after improves performance slightly. Our procedure for NMS is to suppresses the less con-
fident of every pair of detections that overlap sufficiently according to the PASCAL criteria
[5]. In the first variant all pairs of detections are considered (‘exhaustive’). The second vari-
ant is similar, except detections are processed in order of decreasing score, and, unlike in the
first, once a detection is suppressed it can no longer suppress weaker detections (‘greedy’).
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In addition, we observed that many false positives are caused by our detector firing on
sub-regions of a pedestrian (e.g., the legs). To allow two detections BB1 and BB2 at nearby
spatial position but different scales to interact we alter the PASCAL overlap criteria from:

area(BB1∩BB2)

area(BB1∪BB2)
to:

area(BB1∩BB2)

min(area(BB1),area(BB2))
. (1)

We refer to the variants of NMS using the latter overlap criteria as ‘exhaustive*’ and ‘greedy*’.
Results are shown in Fig. 2. As can be seen in the left panel, the overlap must be set

quite differently for the four NMS variants. The ‘exhaustive’ NMS variants are more ag-
gressive then the ‘greedy’ variants, and the ‘*’ variants are more aggressive then the non-‘*’
variants, hence they require the largest overlaps. Performance varies smoothly with the over-
lap making it easy to select. In the right panel we show performance for each NMS variant
for reasonable choices of the overlap. The ‘greedy’ and ‘exhaustive’ variants perform very
similarly, as do the ‘greedy*’ and ‘exhaustive*’ variants. The ‘greedy’ variants are faster, so
they are preferred. The best performance of 91% detection at 1 fppi is achieved by ‘greedy*’
with an overlap set to .65.

1.2.2 Full Image Results

We conclude by repeating all the full image results using the updated detector. Results are
shown in Fig. 3; we refer to our method as ChnFtrs. For details see discussion in Section 4.2
in [1]. Note that up to date and more complete results are maintained on the website for the
Caltech Pedestrian Dataset1.

(a) INRIA Full Image Results
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(b) INRIA Localization Accuracy
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(c) Caltech Pedestrians
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Figure 3: Full image results, see text for details.

References
[1] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel features. In BMVC, 2009.

[2] R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image classifica-
tion. IEEE Transactions on Systems, Man, and Cybernetics, 3(6):610–621, 1973.

[3] T. Kobayashi and N. Otsu. Color image feature extraction using color index local auto-
correlations. In ICASSP, 2009.

[4] K. Levi and Y. Weiss. Learning object detection from a small number of examples: The
importance of good features. In CVPR, 2004.

1www.vision.caltech.edu/Image_Datasets/CaltechPedestrians

Citation
Citation
{Dollár, Tu, Perona, and Belongie} 2009

www.vision.caltech.edu/Image_Datasets/CaltechPedestrians


DOLLÁR, et al.: INTEGRAL CHANNEL FEATURES – ADDENDUM 5

(a) channel combinations (b) color channels (c) # grad. orientation bins

(d) pre-smoothing (e) post-smoothing (f) feature order

(g) # candidate features (h) # weak classifiers (i) boosting algorithm

Figure 4: Evaluation of channel features, see text for details.
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