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Abstract

Pedestrian detection is a key problem in computer vision,
with several applications including robotics, surveillance
and automotive safety. Much of the progress of the past
few years has been driven by the availability of challeng-
ing public datasets. To continue the rapid rate of innova-
tion, we introduce the Caltech Pedestrian Dataset, which
is two orders of magnitude larger than existing datasets.
The dataset contains richly annotated video, recorded from
a moving vehicle, with challenging images of low resolu-
tion and frequently occluded people. We propose improved
evaluation metrics, demonstrating that commonly used per-
window measures are flawed and can fail to predict perfor-
mance on full images. We also benchmark several promis-
ing detection systems, providing an overview of state-of-the-
art performance and a direct, unbiased comparison of ex-
isting methods. Finally, by analyzing common failure cases,
we help identify future research directions for the field.

1. Introduction
Detecting people in images is a problem with a long his-

tory [37, 13, 35, 27, 16, 41, 23, 5]; in the past two years
there has been a surge of interest in pedestrian detection
[6, 9, 11, 18, 20, 21, 25, 30, 32, 33, 36, 38, 42]. Accurate
pedestrian detection would have immediate and far reaching
impact to applications such as surveillance, robotics, assis-
tive technology for the visually impaired, content based in-
dexing (e.g. Flickr, Google, movies), advanced human ma-
chine interfaces and automotive safety, among others. Auto-
motive applications [12, 14, 34] are particularly compelling
as they have the potential to save numerous lives [39].

Publicly available benchmarks, the most popular of
which is the INRIA dataset [5], have contributed to spurring
interest and progress in this area of machine vision. How-
ever, as algorithm performance improves, more challenging
datasets are necessary to continue the rapid pace of progress
and to inspire novel ideas. Existing pedestrian datasets of-
ten contain a limited range of scale, occlusion and pose vari-
ation, and are fairly small, making it difficult to assess real

Figure 1. Example images (cropped) and annotations. The solid green
boxes denote the full pedestrian extent while the dashed yellow boxes de-
note the visible regions. The Caltech Pedestrian Database, collected from
a vehicle driving through regular traffic in an urban environment, consists
of 350,000 labeled pedestrian bounding boxes in 250,000 frames.

world performance (see Sec. 2.4). As we will demonstrate,
the established methodology of evaluating pedestrian detec-
tors, which uses per-window measures of performance, is
flawed and can fail to predict actual per-image performance.

Our contribution is fourfold. (1) We introduce the Cal-
tech Pedestrian Dataset1, which is two orders of magni-
tude larger than any existing dataset. The pedestrians vary
widely in appearance, pose and scale; furthermore, occlu-
sion information is annotated (see Fig. 1). These statistics
are more representative of real world applications and allow
for in depth analysis of existing algorithms. (2) We propose
improved performance metrics. (3) We benchmark seven
algorithms [40, 5, 7, 30, 11, 42, 21], either obtained directly
from the original authors or reimplemented in-house. (4)
We highlight situations of practical interest under which ex-
isting methods fail and identify future research directions.

We introduce the Caltech Pedestrian Dataset and de-
scribe its statistics in Sec. 2. In Sec. 3, we discuss the
pitfalls of per-window metrics and describe our evaluation
methodology, based on the PASCAL criteria [28]. In Sec.
4 we report a detailed performance evaluation for seven
promising methods for pedestrian detection. We summarize
our findings and discuss open problems in Sec. 5.

1www.vision.caltech.edu/Image Datasets/CaltechPedestrians/
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2. Dataset
Challenging datasets are catalysts for progress in com-

puter vision. The Berkeley Segmentation Dataset [22], the
Barron et al. [3] and Middlebury [2] optical flow datasets,
the Middlebury Stereo Dataset [31] and the Caltech 101 ob-
ject categorization dataset [10] all improved performance
evaluation and helped drive innovation in their respective
fields. Much in the same way, our goal in introducing the
Caltech Pedestrian Dataset is to provide a better benchmark
and to help identify conditions under which current detec-
tion methods fail and thus focus research effort on these
difficult cases.

2.1. Images and Ground Truth

We collected approximately 10 hours of 30Hz video
(∼106 frames) taken from a vehicle driving through regu-
lar traffic in an urban environment (camera setup shown in
Fig. 2). The driver was independent from the authors of
this study and had instructions to drive normally through
areas where pedestrians were frequently present. The video
was captured in the greater Los Angeles metropolitan area
from neighborhoods chosen for their relatively high con-
centration of pedestrians: LAX, Santa Monica, Hollywood,
Pasadena, and Little Tokyo.

The CCD video resolution is 640 × 480, and, not unex-
pectedly, the overall image quality is lower than that of still
images of comparable resolution. There are minor varia-
tions in the camera position due to repeated mountings of
the camera. The video was stabilized to remove effects
of the vehicle pitching, primarily to simplify annotation.
To perform the stabilization, we implemented a differential
camera tracker based on the system described in [45].

Figure 2. Camera setup.

total frames ∼1000K
labeled frames ∼250K
frames w peds. ∼132K
# bounding boxes ∼350K
# occluded BB ∼126K
# unique peds. ∼2300
ave ped. duration ∼5s
labeling effort ∼400h

Figure 3. Database Summary.

We annotated 250,000 frames (in 137 approximately
minute long segments) for a total of 350,000 labeled bound-
ing boxes and 2300 unique pedestrians. To make such a
large scale labeling effort feasible we created a user-friendly
labeling tool, briefly described in Fig. 4.

For every frame in which a given pedestrian is visible,
labelers drew a tight bounding box (BB) that indicated the
full extent of the entire pedestrian. For occluded pedestri-
ans this involves estimating the location of hidden parts;
in addition a second BB was used to delineate the visible
region. During an occlusion event, the estimated full BB

Figure 4. Screenshot of the video labeler. It is designed so that users
can efficiently navigate and annotate the video with a minimum amount of
labor. The most salient aspect of the labeler an interactive procedure where
the user labels only a sparse set of frames and the system automatically
labels intermediate frames by interpolation.

stays relatively constant while the visible BB may change
rapidly. For comparison, in the PASCAL labeling scheme
[28] only the visible BB is labeled and occluded pedestrians
are marked as ‘truncated’.

Each sequence of BBs belonging to a given object was
assigned one of three labels. Individual pedestrians were la-
beled ‘Person’ (∼1900 instances). Large groups of pedes-
trians for which it would have been tedious or impossible
to label individuals were delineated using a single BB and
labeled as ‘People’ (∼300). In addition, the label ‘Person?’
was assigned when clear identification of a pedestrian was
ambiguous or easily mistaken (∼110). Example images
with overlaid annotations are shown in Fig. 1.

2.2. Dataset Statistics

A summary of the database is given in Fig. 3. About 50%
of the frames have no pedestrians, while 30% have two or
more. Pedestrians are visible for 5s on average. Below, we
give detailed analysis of the distribution of pedestrian scale,
occlusion and location. This will serve as a foundation for
establishing the requirements for a real world system.

Scale: We group pedestrians by their image size (height
in pixels) into three scales: near (80 or more pixels),
medium (between 30-80 pixels) and far (30 pixels or less).
This division into three scales is motivated by the distribu-
tion of sizes in the dataset, human performance and auto-
motive system requirements.

In Fig. 5(a), we histogram the heights of the 350,000 BBs
in our database using logarithmic sized bins. Cutoffs for the
near/far scales are marked. Note that ∼68% of the pedes-
trians lie in the medium scale, and that the cutoffs for the
near/far scales correspond to about ±1 standard deviation
from the mean height (in log space). One expects to see
the number of pedestrians decrease with the square of their
height, i.e. proportionally with their image area. The de-
crease at the other end, below 30 pixels, is due to annotators
having difficulty identifying small pedestrians reliably.

Detection in the medium scale is essential for automotive
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(a) Height distribution.
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(b) Distance vs height at 55 km/h.

Figure 5. We define the near scale to include pedestrians 80 pixels or
taller, the medium scale as 30-80 pixels, and the far scale as 30 pixels or
less. Most pedestrians are observed at the medium scale, human perfor-
mance is excellent at this scale, and for automotive applications detection
must also occur at this scale. However, most current research targets the
near scale and performance is poor even in the medium scale (see Sec. 4).

applications. We chose a camera setup that mirrors expected
automotive applications: vertical field of view of 27◦, reso-
lution of 640 × 480, and focal length fixed at 7.5mm. As-
suming 1.8m tall pedestrians, we can obtain an estimate
of the distance to a pedestrian of observed pixel height h:
d ≈ 1800/h m. With the vehicle traveling at an urban speed
of 55 km/h (∼15 m/s), an 80 pixel person is just 1.5s away,
while a 30 pixel person is 4s away (see 5(b)). Thus de-
tecting near scale pedestrians may leave insufficient time to
alert the driver, while far scale pedestrians are less relevant.

We shall use the near/medium/far distinction throughout
this work. As described, most pedestrians are observed at
the medium scale and for safety systems detection must also
occur in this scale. Moreover, human performance is quite
good in the near and medium scales but degrades notice-
ably at the far scale. However, most current algorithms are
designed for the near scale and perform poorly even at the
medium scale (see Sec. 4). Thus there is an important mis-
match in current research efforts and the requirements of
real world systems.

Occlusion: Little previous work has been done to quan-
tify detection performance in the presence of occlusion (us-
ing real data). As described, occluded pedestrians are anno-
tated with two BBs that denote the visible and full pedes-
trian extent. In Fig. 6(a), we plot frequency of occlusion,
i.e., for each pedestrian we measure the fraction of frames
in which the pedestrian was occluded. The distribution has
three distinct peaks: pedestrians that are never occluded
(29%), occluded in some frames (53%) and occluded in all
frames (19%). Note that over 70% of pedestrians are oc-
cluded in at least one frame.

For each occluded pedestrian, we can compute the frac-
tion of occluded area as one minus the fraction of visi-
ble area over total area (calculated from the visible and
full BBs). Aggregating, we obtain the histogram in Fig.
6(b). Over 80% occlusion typically indicates full occlu-
sion, while 0% is used to indicate that a BB could not rep-

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3
29%
never

53%
sometimes

19%
always

fraction of time occluded

p
ro

b

(a) Occlusion frequency.
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(b) Occlusion amount.
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(c) Occ. mask.

Figure 6. Occlusion statistics, see text for details.

resent the extent of the visible region (e.g. due to a diagonal
occluder). The interesting cases occur in between, which
we further subdivide into partial occlusion (1-35% area oc-
cluded) and heavy occlusion (35-80% occluded).

Finally, in Fig. 6(c), we display a heat map that indicates
which regions of a pedestrian were most likely to be oc-
cluded (obtained by averaging the occlusion masks). There
is a strong bias for the lower portion of the pedestrian to
be occluded and for the top portion to be visible, i.e. the
typical occluder is lower to the ground. This bias contra-
dicts the common assumption that probability of occlusion
is uniform.

Position: Viewpoint and ground plane geometry (Fig.
2) constrain pedestrians to appear only in certain regions
of the image. We compute the expected center position
(over the 350,000 BBs) and plot the resulting heat map,
log-normalized, in Fig. 7(a). As can be seen pedestrians
are typically located in a narrow band running horizontally
across the center of the image (y-coordinate varies some-
what with distance/height). Note that the same constraints
are not valid when photographing a scene from arbitrary
viewpoints, e.g. in the INRIA dataset.

In the collected data, many objects, not just pedestrians,
tend to be concentrated in this same region. In Fig. 7(b) we
show a heat map obtained by using BBs generated by the
HOG [5] pedestrian detector with a low threshold. About
half of the detections, including both true and false posi-
tives, occur in the same band as the true positives. Thus in-
corporating this constraint would considerably speed up de-
tection but it would only moderately improve performance.
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(b) Distribution of HOG detections.

Figure 7. Expected center location of pedestrian BBs for (a) ground
truth and (b) HOG detections. The heat maps are log-normalized, meaning
pedestrian location is even more concentrated than immediately apparent.



2.3. Training and Testing Data

We split the database into training/testing data and spec-
ify our evaluation methodology. This will allow different
research groups to compare their methods directly; as such,
we urge authors to adhere to one of three training/testing
scenarios described below.

Our data was captured over 11 sessions, each filmed in
one of 5 city neighborhoods. We divide the data roughly in
half, setting aside 6 sessions for training (0-5) and 5 for test-
ing (sessions 6-10). For detailed statistics about the amount
of training/testing data see bottom row of Table 1.

Here we focus on evaluating existing, pre-trained pedes-
trian detectors. Authors are encouraged to re-train their
systems on our larger training set. We specify three train-
ing/testing scenarios:
• Scenario-A: Train on any external data, test on sessions 6-

10. The results reported here use this setup as it allows for a
broad survey of existing methods without any retraining.

• Scenario-B: Perform 6-fold cross validation using sessions
0-5. In each phase use 5 sessions for training and the 6th for
testing, then merge results on the validation sets and report
performance on the entire training set (sessions 0-5).

• Scenario-C: Train using sessions 0-5, test on sessions 6-10.

We are not releasing the test data (sessions 6-10) at this
time. Instead we ask authors to submit final, trained clas-
sifiers which we shall proceed to evaluate. Our aim is to
help prevent overfitting and to extend the dataset’s lifespan.
Furthermore, it ensures that all algorithms are evaluated in
precisely the same manner. Scenario-B allows authors to
compare to other groups prior to having us evaluate using
the full test set under Scenario-C.

2.4. Comparison to Existing Datasets

Existing datasets may be grouped into two types: (1)
‘person’ datasets containing people in unconstrained pose
in a wide range of domains and (2) ‘pedestrian’ datasets
containing upright people (standing or walking), typically
viewed from more restricted viewpoints but often contain-
ing motion information and more complete labeling. The
most widely used ‘person’ datasets include subsets of the
MIT LabelMe data [29] and the PASCAL VOC datasets
[28]. In this work we focus primarily on pedestrian detec-
tion, which is more relevant to certain applications includ-
ing surveillance, robotics and automotive safety.

Table 1 provides a detailed overview of existing pedes-
trian datasets. Pedestrians can be labeled in photographs
[5], surveillance video [26], and images taken from a mo-
bile recording setup, such as a robot or vehicle [8]. Datasets
gathered from photographs suffer from selection bias, as
photographs must be manually chosen to contain only up-
right people and negative images are chosen according to
arbitrary criteria, while surveillance videos have restricted
backgrounds. Datasets collected with a mobile recording
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MIT[27] 924 – – – – – 128 128 128 3
USC-A[43] – – – 313 – 205 70 98 133 3
USC-B[43] – – – 271 – 54 63 90 126 3
USC-C[44] – – – 232 – 100 74 108 145 3 3

CVC[14] 1000 6175† – – – – 46 83 164 3 3
TUD-det[1] 400 – 400 311 – 250 133 218 278 3 3
INRIA[5] 1208 1218 614 566 453 288 139 279 456 3

DC[24] 2.4k 15k† – 1.6k 10k† – 36 36 36 3
ETH[8] 2388 – 499 12k – 1804 50 90 189 3 3 3 3
Caltech 192k 61k 67k 155k 56k 65k 27 48 97 3 3 3 3 3 3

Table 1. Comparison of pedestrian datasets. The first six columns indi-
cate the amount of training/testing data in each dataset, with ‘k’ used to de-
note thousands (1k=103). The columns are: number of unique pedestrian
BBs (not counting reflections, shifts, etc.), number of images containing
no pedestrians (a † indicates cropped negative BBs only), and number of
images containing at least one pedestrian. Note that the proposed dataset
is two orders of magnitude larger than existing datasets. The next three
columns give the 10th percentile, median and 90th percentile pixel heights
of the pedestrians, showing the range of scales found in each dataset. The
final columns summarize additional properties of each dataset.

setup largely eliminate selection bias. In addition, unlike
all previous pedestrian datasets, our dataset was not built to
demonstrate the effectiveness of a particular method, and
thus provides for an impartial, challenging test bed.

The INRIA dataset [5] has helped drive recent advances
in pedestrian detection and remains the most widely used.
However, it is biased toward large, mostly unoccluded
pedestrians. The other most relevant datasets are the Daim-
lerChrysler (DC) [24] and ETH [8] datasets. The DC data,
also captured in an urban setting, contains only very small,
cropped pedestrians. The ETH data, captured using a pair
of cameras attached to a stroller, has reasonable scale vari-
ation and a significant amount of labeled data; however, oc-
clusions are not annotated and each frame is labeled inde-
pendently.

We conclude by summarizing the most novel and impor-
tant aspects of the Caltech Pedestrian Dataset. It includes
O(105) pedestrian BBs labeled in O(105) frames, two orders
of magnitude more than any other dataset. The dataset in-
cludes color video sequences and contains pedestrians with
a large range of scales and more pose variability than typ-
ical pedestrian datasets. Finally, as far as we know, this is
the first dataset with temporal correspondence between BBs
and detailed occlusion labels.

3. Evaluation Methodology

The established methodology for evaluating pedestrian
detectors is flawed. Most authors compare per-window per-
formance, e.g. this is the accepted methodology for the IN-
RIA dataset [5], as opposed to the per-image measures fre-
quently used in object detection [28]. In real applications,
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VJ  (0.42)

HOG  (0.21)

FtrMine  (0.31)

Shapelet  (0.50)

MultiFtr  (0.15)

LatSvm  (0.19)

HikSvm  (0.26)
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(b) INRIA per-image results.

Figure 8. Results on the INRIA datasets (each algorithm is described in
more detail in Sec. 4). The per-window results, when available, are repro-
duced from the original publications (the VJ curve is extracted from [5]).
Typically results are reported on cropped positives, but the INRIA dataset
also contains full images with the same pedestrians but within the origi-
nal context. We computed the per-image results using the 288 full images
(each containing at least one pedestrian) and the methodology described
in Sec. 3.1. Note the reordering of the classification performance between
the per-window and per-image results.

a per-window detector is densely scanned across an im-
age and nearby detections merged, e.g. using non maximal
suppression (NMS). Instead, Dalal & Triggs suggest eval-
uating a detector by classifying cropped windows centered
on pedestrians against windows sampled at a fixed density
from images without pedestrians, thus avoiding NMS or
other post processing. The typical assumption is that better
per-window scores will lead to better performance on entire
images; however, in practice per-window performance can
fail to predict per-image performance (see Fig. 8).

There may be a number of explanations. Per-window
evaluation does not measure errors caused by detections at
incorrect scales or positions or arising from false detections
on body parts, nor does it take into account the effect of
NMS (which can reduce false positives at varying rates for
different methods). Detectors may require different sam-
pling schemes [36], particularly those that are somewhat in-
variant to changes in position and scale; furthermore, there
can be complex interactions between sampling density and
NMS. Together, these factors make evaluating a classifier
independently of the overall detection scheme difficult.

Of course, not all detection systems are based on slid-
ing windows [19, 17], and per-window evaluation of such
systems is impossible. Perhaps the biggest pitfall of the
per-window scheme pertains to use of cropped positives
and uncropped negatives for training and testing: classi-
fiers may exploit window boundary effects as discrimina-
tive features leading to good per-window performance but
poor per-image performance. We observed this in two of
the algorithms evaluated [30, 21] 2.

2Both groups have acknowledged this. E.g., see the advisory posted
at Mori’s website: www.cs.sfu.ca/˜mori/research/papers/
sabzmeydani_shapelet_cvpr07.html. For both algorithms we
evaluate updated, corrected versions.

3.1. Per-image evaluation

We perform single frame evaluation using a modified
version of the scheme laid out in the PASCAL object de-
tection challenges [28]. A detection system needs to take in
an image and return a BB and a score or confidence for each
detection. The system should perform multiscale detection
and any necessary NMS or other post processing. Evalua-
tion is performed on the final generated list of detected BBs.

A detected BB (BBdt) and a ground truth BB (BBgt)
form a potential match if their areas overlap sufficiently.
Specifically, we employ the PASCAL measure, which states
that the area of overlap a0 must exceed 50%:

ao =
area(BBdt ∩BBgt)
area(BBdt ∪BBgt)

> 0.5 (1)

The threshold of 50% is arbitrary but reasonable.
Each BBdt and BBgt may be matched at most once.

We resolve any assignment ambiguity by matching detec-
tions with highest confidence first. In rare cases this assign-
ment may be suboptimal, especially in crowded scenes [32],
but in practice the effect should be negligible. Unmatched
BBdt count as false positives and unmatched BBgt as false
negatives. To compare methods we plot miss rate against
false positives per-image by varying the threshold on detec-
tion confidence. This is preferred to precision recall curves
for certain tasks, e.g. automotive applications, as typically
there is an upper limit on the acceptable false positives per-
image rate independent of pedestrian density.

To evaluate performance on different subsets of the
ground truth, we introduce the notion of ignore regions.
Ground truth BBs selected to be ignored, denoted using
BBig , need not be matched, however, matches are not con-
sidered mistakes either. E.g., to evaluate performance on
unoccluded pedestrians, we set all BBs that contain oc-
cluded pedestrians to ignore. Matching proceeds as before,
except BBdt matched to BBig do not count as true posi-
tives, and unmatched BBig do not count as a false nega-
tives (matches to BBgt are therefore preferred). Note that
setting a BB to ignore is not the same as removing that BB
from the ground truth; in the latter case detections in the
ignore regions would count as false positives.

Four types of ground truth are always set to ignore:
any BBgt under 20 pixels high or near image borders (to
avoid boundary effects), containing a ‘Person?’ (difficult
or ambiguous cases), or containing ‘People’. In addition,
each ‘People’ BB is broken down into multiple overlapping
BBig , each having the same height as the ‘People’ BB. De-
tections in these regions do not affect performance.

We conclude by listing additional details. Some detec-
tors output BBs with padding around the pedestrian (e.g.
HOG outputs 128 × 64 BBs around 96 pixel tall people),
such BBs are cropped appropriately. Methods usually de-
tect pedestrians at some minimum size, to coax smaller de-
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VJ[40] Haar AdaBoost 3 7.0 96 1.05 ’04
HOG[5] HOG linear SVM 3 3 13.3 96 1.05 ’05

FtrMine[7] gen. Haar AdaBoost 3 3 45 96 1.20 ’07
Shapelet[30] gradients AdaBoost 3 60.1 96 1.05 ’07
MultiFtr[42] HOG+Haar AdaBoost 3 3 3 18.9 96 1.05 ’08
LatSvm[11] HOG latent SVM 3 3 6.3 80 1.05 ’08
HikSvm[21] HOG-like HIK SVM 3 3 140 96 1.20 ’08

Table 2. Overview of tested algorithms. All approaches use sliding win-
dows and NMS (all except LatSvm use kernel density estimation for NMS,
as proposed in [4]). All use variants of HOG or Haar features and are
trained with variations of boosting or SVMs. LatSvm was trained on
the PASCAL dataset, the others on the INRIA pedestrian dataset. Only
LatSvm and MultiFtr reported results using per-image measures, the rest
of the algorithms were originally evaluated using per-window measures.
Runtime per 640 × 480 image, model height used for training and the
scale stride used for testing are also listed. The tested implementations
of Shapelet and HikSvm have been corrected so they no longer overfit to
boundary effects (see Sec. 3). Due to time and memory constraints, we
were unable to run HikSvm on upscaled images. This adversely affects
HikSvm’s overall performance as small pedestrians are not detected.

tections we upscale the input images. For ground truth, the
full BB is always used for matching, not the visible BB,
even for partially occluded pedestrians. Finally, all reported
results are computed using every 30th frame in the test data.

4. Evaluation Results

To measure performance we evaluated seven promising
pedestrian detectors (Table 2). We obtained the detectors
directly from their authors, the only exceptions were the
VJ and Shapelet detectors which were reimplemented in
[42] (these outperform the OpenCV VJ code and the orig-
inal Shapelet code, respectively, see Fig. 8(b)). We fo-
cus on evaluating existing, pre-trained pedestrian detectors
(Scenario-A described in Sec. 2.3). We use the evaluation
methodology outlined in Sec. 3.1, plotting miss rate ver-
sus false positives per-image (FPPI) in log-log scale (lower
curves indicate better performance). We use the miss rate
at 1 FPPI as a common reference point to compare results
(note that on average there are 1.4 pedestrians per image).

Overall: We begin by plotting results on the entire
dataset in Fig. 9(a). MultiFtr outperforms the remaining
methods, with HOG as a close second. However, absolute
performance is quite poor, with a miss rate of over 80% at
1 FPPI. Performance should improve somewhat upon re-
training. To understand where the methods fail we examine
performance on varying subsets of the data.

Scale: As discussed in Sec. 2.2, we group pedestri-
ans according to their pixel height into the near (80 or
more pixels), medium (30-80 pixels) and far (30 pixels or
less) scales. Results for each scale, on unoccluded pedes-
trians only, are shown in Fig. 9(d)-9(f). For unoccluded

Figure 10. Selected HOG false negatives (left) and high confidence false
positives (right) for near scale unoccluded pedestrians.

near pedestrians, purely gradient based detectors such as
HikSvm, LatSvm and especially HOG perform best, with a
miss rate under 40% at 1 FPPI. At the medium scale, which
contains over 68% of the annotated pedestrians, MultiFtr
achieves the best relative performance but absolute perfor-
mance is quite poor with 72% miss rate at 1 FPPI. HOG per-
forms similarly at this scale. At the far scale performance
is rather abysmal; none of the algorithms is able to achieve
more than 8% recall at 1 FPPI. Results for HikSvm at the
medium/far scales are not shown (see Table 2 for details).

Occlusion: The impact of occlusion on detecting pedes-
trians with a minimum height of 50 pixels is shown in Fig.
9(g)-9(i). As discussed in Sec. 2.2, we classify pedestrians
as unoccluded, partially occluded (1-35% area occluded)
and heavily occluded (35-80% occluded). Performance
drops significantly even under partial occlusion, leading to
a maximum recall of slightly under 30% at 1 FPPI achieved
by MultiFtr. For heavy occlusion the situation becomes
worse, with maximum recall dropping to 7% at 1 FPPI.
Note that LatSvm, which is part-based, degrades least.

Aspect ratio: The mean aspect ratio of BBs in the pro-
posed dataset is about 0.43 and has a standard deviation of
0.1. Atypical aspect ratios (outside of one standard devia-
tion) frequently correspond to variations in viewpoint and
pose. Results on unoccluded, 50 pixel or taller pedestrians,
split according to aspect ratio, are shown in Fig. 9(b) and
9(c). Performs clearly degrades for atypical aspect ratios,
from a maximum recall of about 56% at 1 FPPI on typ-
ical aspect ratios, achieved by HOG, to about 40% recall
achieved by both HOG and MultiFtr. However, the impact
is not as severe as for occlusion and scale.

Summary: HOG, MultiFtr and FtrMine tend to outper-
form the other methods surveyed. VJ and Shapelet per-
form poorly. LatSvm likely suffers from being trained on
the Pascal dataset, while results for HikSvm are artificially
depressed since small people are not detected. HOG per-
forms best on near, unoccluded pedestrians (typical errors
are shown in Fig. 10). MultiFtr ties or outperforms HOG
on more difficult cases (smaller scales, occlusion, atypi-
cal aspect ratios), and as these comprise the bulk of the
dataset MultiFtr achieves a slightly higher overall perfor-
mance. However, absolute performance in these cases is
still poor.
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(b) Typical aspect ratios
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(c) Atypical aspect ratios
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(d) Near scale
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(e) Medium scale
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(f) Far scale
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(g) No occlusion
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(h) Partial occlusion
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(i) Heavy occlusion
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Figure 9. Miss rates versus false positive per-image curves shown for various subsets of the data. Lower curves indicate better performance; miss rate
at 1 FPPI for each algorithm is shown in plot legends. (a) Overall performance on the entire dataset. (b-c) Performance w.r.t. aspect ratio (computed for
unoccluded pedestrians 50 pixels or taller). (d-f): Performance w.r.t. scale (computed for unoccluded pedestrians). (g-i): Performance under varying levels
of occlusion (computed for pedestrians 50 pixels or taller). Due to time and memory constraints, we were unable to run HikSvm on upscaled images; this
adversely affects HikSvm’s performance on many of the plots shown.

5. Discussion and Future Work

We introduced the large, richly annotated Caltech Pedes-
trian Dataset for training and evaluating pedestrian detec-
tors and benchmarked a number of promising methods. Al-
though recent literature would suggest otherwise, our anal-
ysis shows that HOG remains competitive, especially when
properly benchmarked (using per-image metrics).

For unoccluded pedestrians over 80 pixels high, HOG
achieves 60% recall at 1 FPPI on the proposed dataset (see
Fig. 9(d)). This is worse but comparable to the 80% recall
at 1 FPPI on the INRIA data on which HOG was trained.
Under these conditions performance is reasonable but still

below levels necessary for real world applications.

Under more realistic and challenging conditions, perfor-
mance degrades rapidly. Two under explored cases stand
out as being particularly frequent and relevant in the data
gathered: pedestrians at lower resolution and under partial
occlusion. Note that pedestrians in the medium/far scales
represent more than 80% of the data; furthermore, in auto-
motive tasks it is crucial to identify pedestrians early to give
ample warning to the driver. Occlusion is likewise common,
only 30% of pedestrians remain unoccluded for the entire
time they are present. Yet, as our analysis has shown, these
are precisely the tasks for which current methods fail. Fur-



ther research addressing detection at smaller scales and of
partially occluded pedestrians is crucial.

A number of cues should help improve performance at
low resolutions and under occlusion. The first of these is
context, both spatial [9, 15] and temporal [4]. Discrimi-
native part-based approaches [6, 11] may also provide more
robustness to occlusion, although those may be ill-suited for
low resolution pedestrians.

We are planning to extend our benchmark to explore
two more issues. Of primary importance is to repeat the
evaluation of each algorithm after re-training on our dataset
(Scenario-C). We are also interested in evaluating detectors
that utilize features computed over 2-4 frames [41, 4] and
also algorithms that integrate information over longer time
scales. The database, annotation tool and evaluation code
are available on the project website.
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