

Multiple Component Learning for Object Detection

Piotr Dollár^{1,2} Boris Babenko² Pietro Perona¹ Serge Belongie^{1,2}

Zhuowen Tu³

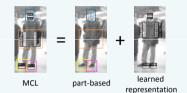
¹ Electrical Engineering. California Institute of Technology pdollar@caltech.edu

² Computer Science and Engineering University of California, San Diego {bbabenko,sjb}@cs.ucsd.edu

³ Lab of Neuro Imaging University of California. Los Angeles Zhuowen.tu@loni.ucla.edu

Goals

- 1. Learn part-based classifier with weak supervision (object labels provided, but no part labels)
- 2. Part models are classifiers from rich hypothesis class (rather than Gaussian distributions, templates, etc.)
- 3. No complex inference since model is discriminative



Overview

- (1) Learning a single part
- Weakly supervised learning Object location in positive images unknown • Developed for learning objects, use for parts • We use Multiple Instance Learning (MIL)
- (2) Learning diverse parts What prevents learning same part repeatedly • Different weighting of data Not all narts expressed in all images

(3) Combining part detectors

Boosting offers way of combining multiple diverse classifiers • Train one weak (part) classifier using MIL Re-weight samples according to current error · Repeat until training error sufficiently low

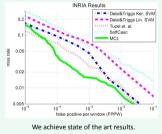
Set Learning

Pedestrian Detection

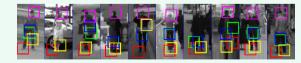
Low-level features

• Features for component classifiers • Haars over multiple channels: gray (1), grad (1), quantized grad (6)

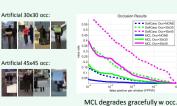
Results on INRIA Data



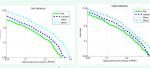
Learned components (first 5)



Robustness to Occlusion



Role of Alignment



 Aligned data → higher performance Can't simultaneously align articulated object without part based model

- 2. Component learning weakly supervised
- 3. Principled, general algorithm

Multiple Component Learning (MCL)

Boosting

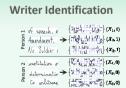
Derivation

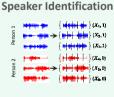
- Input: N training examples (x_i, y_i) with x_i ∈ X and y_i ∈ Y • Combines T weak classifiers $h_i(x)$ to learn strong classifier: $H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$ Excellent generalization and strong theoretical foundation No assumptions about input space
- Only requires weak classifiers for arbitrary X $h_t: \mathcal{X} \to \{-1, 1\}$
- For example, can use \mathcal{X}^m (sets) in place of \mathcal{X}
- · Can therefore use MIL to train weak classifier • MIL learns a function $\hat{F}: \mathcal{X}^m \rightarrow [0, 1]$ • Specifically, learns f in $\hat{F}(X_i) = \operatorname{softmax}_i(f(x_{ij}))$ • Only need to adjust MIL to take weights

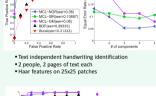
Given: N labeled training examples (X_i, y_i) with $y_i \in \{-1, 1\}$ and $X_i =$ $\{x_{i1}, \ldots, x_{im}\}$, and initial distr. of weights $D_1(i) = \frac{1}{N}$ over the examples. For t = 1, ..., T: Train a MIL classifier *Ê*_t : X^m → [0, 1] using distribution D_t. Let *Ê*[']_t(X_i) = • Calculate error of $\tilde{F}_t': \epsilon_t = \sum_{i=1}^N D_t(i) \mathbf{1}(y_i \neq \tilde{F}_t'(X_i)).$ • Set $\alpha_t = -\frac{1}{2} \log (\epsilon_t / (1 - \epsilon_t))$. • Set $D_{t+1}(i) = D_t(i) \exp \left(-\alpha_t y_i \hat{F}'_t(X_i)\right)/Z_t$, where $Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$ is a normalization factor.

Output the MCL classifier: $\mathcal{F}(X) = \text{sign}\left(\sum_{i=1}^{T} \alpha_i \hat{F}'_i(X)\right)$

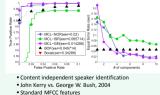
Other Applications







1 1 2 2 2 4 4 4

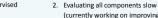


Summary

- Advantages:
- 1. General notion of parts (components)
 - 1. Large amount of data needed

Disadvantages:

4. State of the art results with simple features



(currently working on improving speed)

• Features for overall classifier

• Densely compute component responses C_i Final classifier retrained with Haars over C.

Incorporating Spatial Relations

C₁ C₂

Single Scale Detection Results

Algorithm