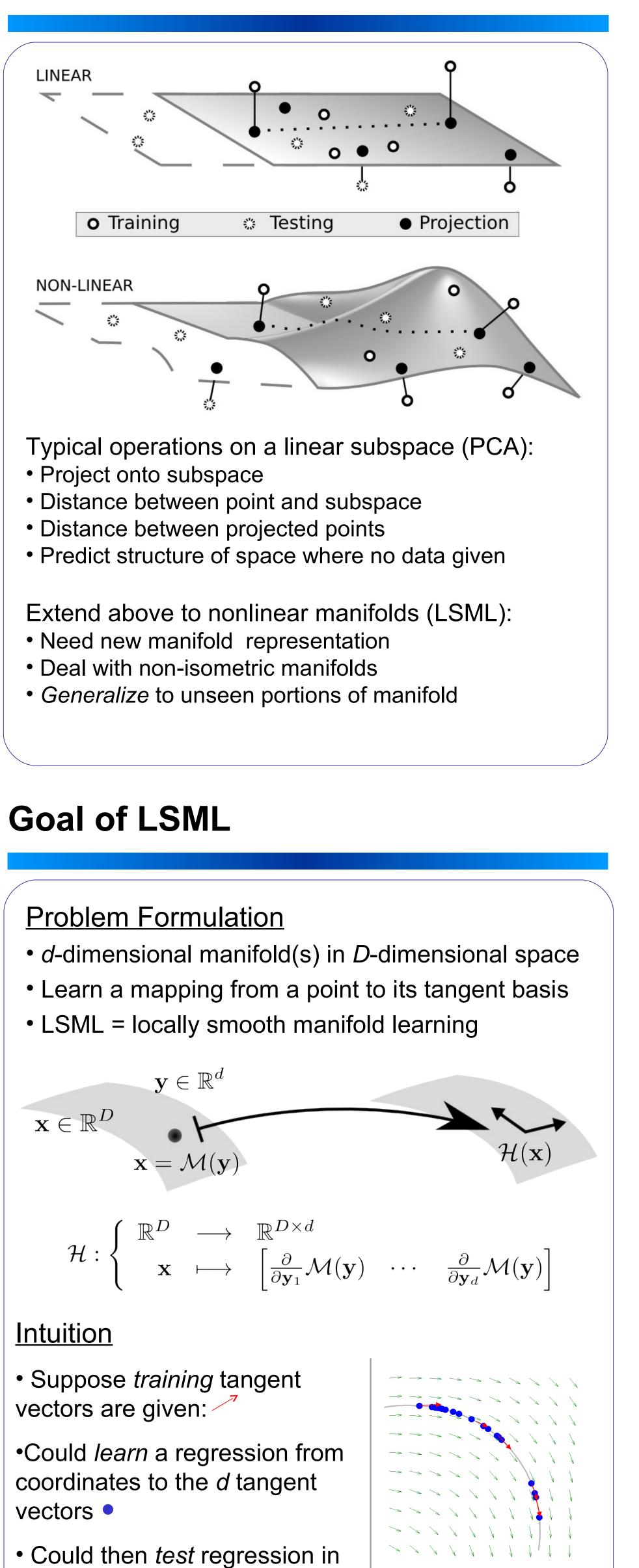


Introduction



other places on manifold: <u>Benefits</u>

• Representation learned by LSML (tangent space) appropriate for non-isometric manifolds

• Learns a mapping over \mathbb{R}^{D} . Can be applied beyond support of original data (generalization).

 Can also learn from multiple manifolds, generalize to new manifolds: *manifold transfer*

Non-Isometric Manifold Learning Analysis and an Algorithm

Piotr Dollár

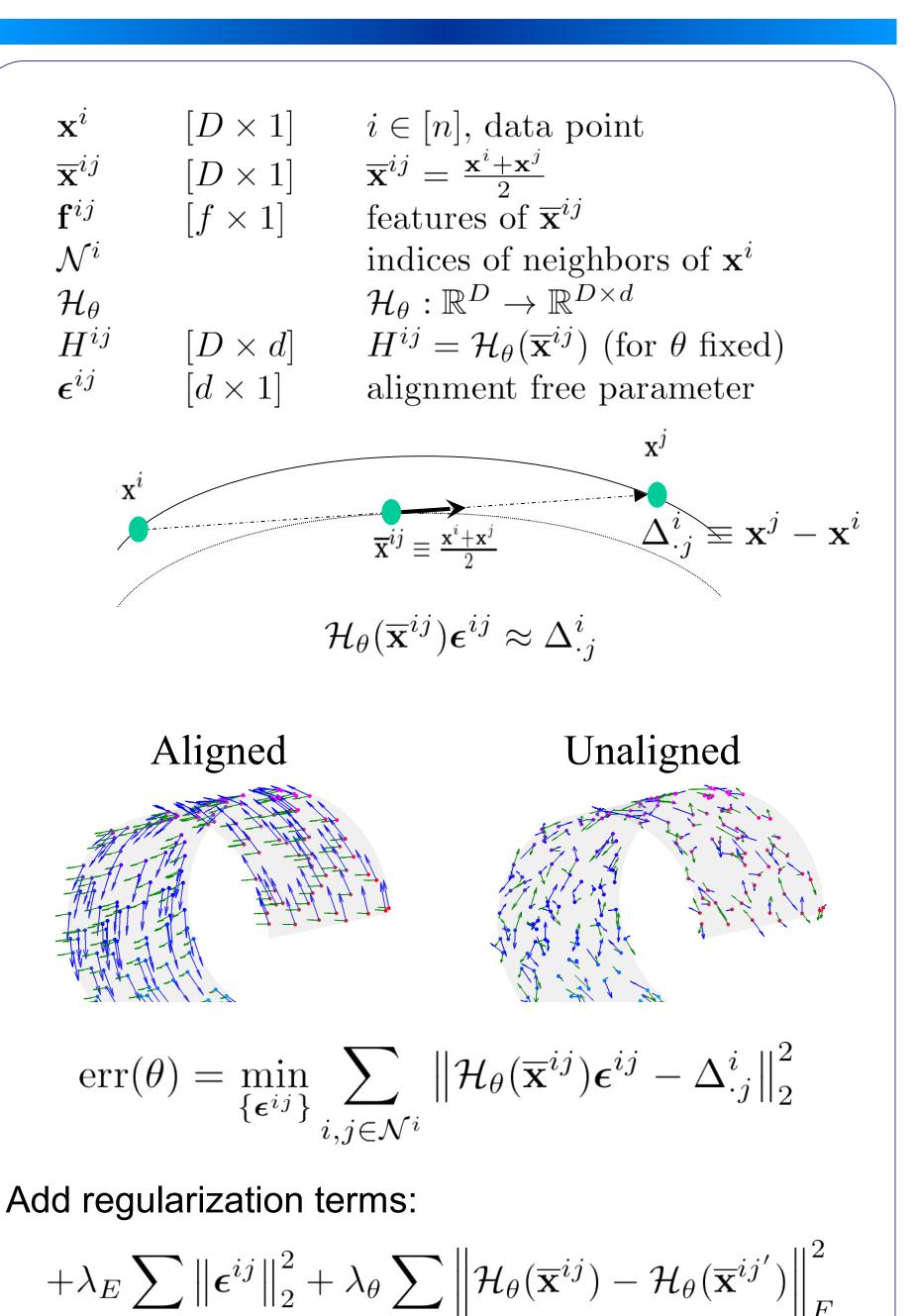
Computer Science and Engineering University of California, San Diego pdollar@cs.ucsd.edu

Vincent Rabaud

Computer Science and Engineering University of California, San Diego vrabaud@cs.ucsd.edu

Error Function

Analyzing Manifold Learning Methods



Optimization Procedure

Linear form:
$$\mathcal{H}_{\theta}(\overline{\mathbf{x}}^{ij}) = \left[\Theta^{1}\mathbf{f}^{ij}\cdots\Theta^{D}\mathbf{f}^{ij}\right]^{\top}$$

 $\operatorname{err}(\theta) = \min_{\{\epsilon^{ij}\}} \sum_{i,j\in\mathcal{N}^{i}} \sum_{k=1}^{D} \left(\mathbf{f}^{ij^{\top}}\Theta^{k^{\top}}\epsilon^{ij} - \Delta_{kj}^{i}\right)^{2}$

Initialize Θ randomly. while $err(\Theta)$ decreases do $\forall i, j$, solve for the best $\boldsymbol{\epsilon}^{ij}$ given the Θ^k s:

$$\boldsymbol{\epsilon}^{ij} = (H^{ij^{\top}}H^{ij} + \lambda_{\epsilon}I)^{+}H^{ij^{\top}}\Delta_{\cdot,i}^{i}$$

 $\forall k$, solve for the best Θ^k given the ϵ^{ij} 's:

Let:
$$A = \begin{bmatrix} \vdots \\ \epsilon^{ij^{\top}} \otimes \mathbf{f}^{ij^{\top}} \\ \vdots \end{bmatrix}, \mathbf{b}^{k} = \begin{bmatrix} \vdots \\ \Delta_{kj}^{i} \\ \vdots \end{bmatrix}$$

 $\operatorname{vec} \left(\Theta^{k^{\top}} \right) = (A^{\top}A + \lambda_{\Theta}(I \otimes (\Delta_{F}^{\top}\Delta_{F}))^{-1}A^{\top}\mathbf{b}^{k}$
end while

• To obj
• To ext
By definition
err_{GD} =
Requires t
1.
$$S_n - f$$

2. $S_{\infty} - f$
Results:
• Finite San
LSML >
• Model Con
– All meth
– Bias-Va
• Similar for

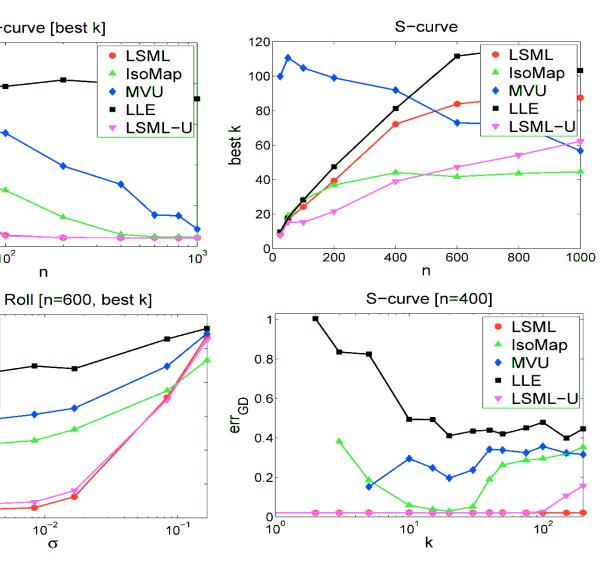
LSML Test Error

Typically • Need • Model	notio
Define:	$\operatorname{err}_{\operatorname{LS}}$
Claim:	err_{L}
• Can	muc not b also

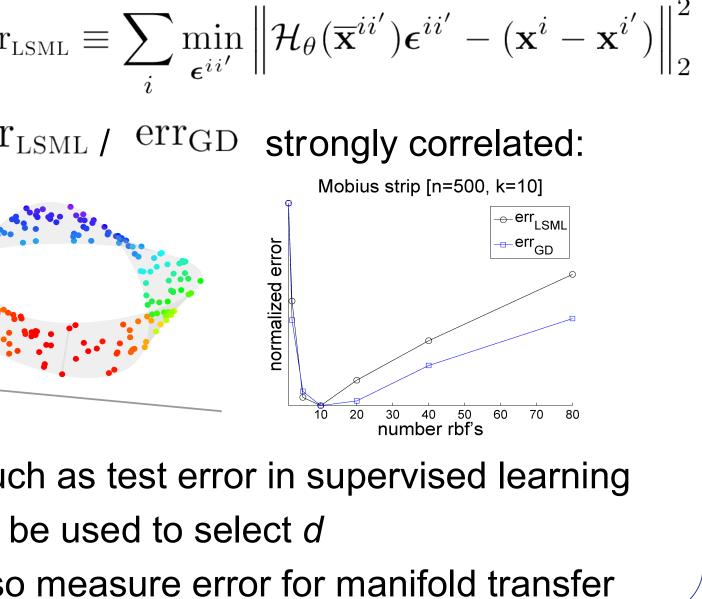
Serge Belongie

Computer Science and Engineering University of California, San Diego sjb@cs.ucsd.edu

- Need evaluation methodology:
 - jectively compare methods tend to non-isometric manifolds
 - , for isometric manifolds embedding nould preserve distance
 - Estimated dist True distance
 - two sets of samples from manifold: for training
 - for computing "true" geodesics (Isomap)

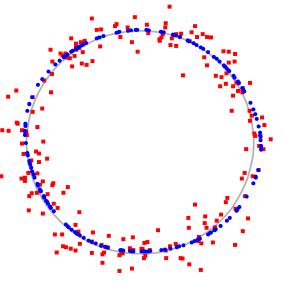


- nple performance:
- ISOMAP > MVU > LLE
- mplexity
- hods have at least one parameter: k ariance tradeoff
- r non-isometric (LSML / Isomap only)
- o not available on of generalization: testable prediction essment / Model selection



Using the Tangent Space

 x^i is noisy and its clean version χ^i needs to be close and to satisfy local linearity assumption: $\operatorname{err}_{\mathcal{M}}(\chi) = \min_{\{\boldsymbol{\epsilon}^{ij}\}} \sum_{\substack{\{\boldsymbol{\epsilon}^{ij}\}\\ i \neq j \neq i}} \left\| \mathcal{H}_{\theta}(\overline{\chi}^{ij})\boldsymbol{\epsilon}^{ij} - (\chi^{i} - \chi^{j}) \right\|_{2}^{2}$ $\operatorname{err}_{\operatorname{orig}}(\chi) = \sum \left\| \chi^{i} - \mathbf{x}^{i} \right\|_{2}^{2}$ $B^{ij^+}B^{ij}(\chi^i-\chi^j)$ $\chi^i - \mathbf{x}^i$ $-\chi^{i-1}\|_{2}^{2}$ $\sum (\chi^i - \chi^j)$ curate bedding of uctured and arse data ng geodesics Generalization beyond support of training data Tangent field learned for non-isometric manifolds; Error low even in sparsely sampled regions



$$\frac{\partial \operatorname{err}_{\mathcal{M}}}{\partial \chi^{i}}(\chi) = 4 \sum_{j \in \mathcal{A}} \frac{\partial \operatorname{err}_{\operatorname{orig}}(\chi)}{\partial \chi^{i}} = 2 \left(\chi\right)$$

<u>Projection</u> A projection x' of x must satisfy: $\min_{\mathbf{x}'} \|\mathbf{x} - \mathbf{x}'\|_2^2$ Perform gradient descent after initializing x' to a close point on manifold: $\mathbf{x}' \leftarrow \mathbf{x}' + \alpha H' H'^{\top} (\mathbf{x} - \mathbf{x}')$ Manifold De-noising Apply gradient descent to minimize overall error: <u>Geodesic Distance</u> Is the length of an optimal path χ' between two points, with local tangents on the manifold. Alternative optimization of above + $\operatorname{err}_{\mathcal{M}}(\chi)$ by projected gradient descent: <u>Other Example Uses</u>

$$\operatorname{err}_{\operatorname{length}}(\chi) = \sum_{i=2}^{m} \|\chi^{i} - \chi^{i}\|_{\mathcal{X}}$$

$$\frac{\partial \text{err}_{\text{length}}}{\partial \chi^i}(\chi) = 2 \sum_{j=1}^{N}$$

		•••	
			Acc
	• • •	•••	emb
			stru
			spa
		•••	usir

