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Abstract

Several popular and effective object detectors separately
model intra-class variations arising from deformations and
appearance changes. This reduces model complexity while
enabling the detection of objects across changes in view-
point, object pose, etc. The Deformable Part Model (DPM)
is perhaps the most successful such model to date. A com-
mon assumption is that the exponential number of templates
enabled by a DPM is critical to its success. In this paper,
we show the counter-intuitive result that it is possible to
achieve similar accuracy using a small dictionary of de-
formations. Each component in our model is represented
by a single HOG template and a dictionary of flow fields
that determine the deformations the template may undergo.
While the number of candidate deformations is dramati-
cally fewer than that for a DPM, the deformed templates
tend to be plausible and interpretable. In addition, we dis-
cover that the set of deformation bases is actually trans-
ferable across object categories and that learning shared
bases across similar categories can boost accuracy.

1. Introduction
Objects within general categories vary significantly from

one instance to the next. We can group the numerous fac-
tors contributing to these changes into two broad categories.
First, the appearance of an object may change due to light-
ing variation or albedo differences, arising, for example,
from differences in a person’s clothing. Second, which is
the focus of this work, are the changes that result from de-
formations due to viewing angle, object pose, or articulated
motion such as the movements of a person’s arms or legs.

Many detectors are naturally invariant to a limited
amount of appearance variation or small deformations but
have trouble handling the more extreme changes that real
world objects undergo. For instance, Histogram of Oriented
Gradients (HOG) features combined with a linear SVM [5]
are effective for relatively rigid objects such as pedestri-
ans but have trouble handling more general human poses.
Mixture models can address these concerns to some ex-

Figure 1: HOG templates generated by sampling the Deformable
Parts Model (DPM) [11] and our model. While a DPM is capable
of modeling an exponential number of candidate templates, the
templates are prone to being implausible and disjoint. In contrast,
our deformation dictionary captures only a small but feasible and
interpretable set of smooth deformations. The main and surprising
result of this work is that a model using only a small dictionary of
deformations per component is capable of matching and in some
instances outperforming DPMs.

tent [11, 6]. However, as the number of components in-
creases, so does the number of model parameters; simulta-
neously, the amount of data for training each component de-
creases. This is a classic recipe for overfitting and limits the
gains from further increasing the number of components.

An effective alternative is to train a single canonical ap-
pearance template and transform it to account for different
views or deformations [4, 11, 15]. This greatly reduces the
number of parameters that needs to be learned and leads to
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better generalization. A critical aspect of these approaches
is the model used for deformations. A common approach to
modeling deformations popularized by Felzenszwalb et al.
[11] are part-based models. Their Deformable Parts Model
(DPM) represents an object as a set of parts that trans-
late around an anchor location. The part movements form
the set of allowed deformations, while the part appearance
templates are shared across the deformations. The model
achieves excellent detection performance due in part to its
ability to share parameters across deformations.

A common assumption is that the exponential number
of deformations enabled by the DPM is also critical to its
success. In this paper, we explore whether this assump-
tion is correct and whether alternative deformation models
may achieve similar performance. Using a DPM, we may
sample the position of the parts to generate HOG templates
(Figure 1). Notice that many samples produce implausible
configurations of parts. In practice, this may lead to a reduc-
tion in precision as unlikely configurations are given high
scores. Is it possible to define a deformation model that is
more effective at constraining the set of deformations, while
not being overly restrictive and reducing recall?

In this paper, we introduce a new deformation model.
Our approach consists of a canonical appearance template
together with a set or ‘dictionary’ of likely deformations
represented as 2D flow fields. Our goal is to learn a dictio-
nary of flow fields that limits the deformations to those that
are highly likely while simultaneously being diverse enough
so as not to lead to a reduction in recall. We obtain our de-
formation dictionary by first computing flow basis vectors
extracted from the training data using Principle Component
Analysis (PCA). After projecting onto the basis vectors, we
obtain a discrete set of deformations by clustering. In or-
der to handle extreme deformations and large changes in
appearance or occlusion, we extend our model to include
multiple components similar to the DPM. The result is a
model with shared appearance parameters that is capable of
effectively modeling large deformations.

Interestingly, even though our model only contains a
small number of deformations, as opposed to the expo-
nential number of deformations possible in the DPM, we
achieve similar and even somewhat improved performance
on the PASCAL VOC 2012 dataset [10]. In addition, we
demonstrate that the deformation bases are actually trans-
ferable across object categories and that learning flow bases
across similar categories can boost performance.

2. Related work
The notion of objects as a collection of parts predates de-

formable part models. Constellation models [24] used simi-
lar models for image classification. Pictorial structures [12]
showed the benefit of such models for pose estimation. The
DPM [11] extended this idea to object detection, and intro-

duced two innovations over a single HOG detector: a mix-
ture model to capture different aspects, and a set of high
resolution part filters in each mixture component that can
move about an anchor location. Conditioned on the root’s
anchor location, each part in the DPM can move indepen-
dent of the others, leading to a so-called star model.

Since the introduction of the DPM, several papers have
investigated the different design choices that DPM makes.
Zhu et al. [27] shows that a DPM can be expressed as an
exponentially large mixture model where all components
share parameters. They find that improvements in perfor-
mance are due in equal part to the sharing of parameters as
well as the ability to construct new unseen mixture compo-
nents at test time. However, the experiments of [6] suggest
that one can come quite close to DPM performance using
small mixture models if the components clump together vi-
sually similar examples. In this paper, we investigate a mid-
dle ground: at test time our model amounts to a small mix-
ture model, but at train time we share parameters among the
mixture components. We show that this model can perform
as well as or better than the DPM.

Previous papers have looked at different kinds of defor-
mations. The “parts” in the DPM are initialized in a heuris-
tic and unsupervised manner, and the deformations are rel-
ative to the root (“star” model). Azizpour and Laptev [2]
show improvements in performance by providing part level
supervision and replacing the star model with a tree model
imputed from the training examples. Vedaldi and Zisserman
[23] discard the notion of parts entirely and instead have
a small number of predefined global rotation and scaling
transformations. Ladicky et al. [15] propose a deformation
field where each HOG cell in the template moves separately.
To prevent the template from “falling apart,” they force the
deformation field to be locally affine. Our work differs from
these models in that we impose a minimal set of a priori re-
strictions on the set of deformations.

Following the tradition of modeling deformations as
moving parts, Hejrati and Ramanan [14] introduce part level
mixtures and use part level supervision to improve object
detection; this follows prior work on pose estimation [26].
Their aim is to improve both detection and pose estima-
tion. Some recent work on pose estimation tries to incorpo-
rate 3D constraints directly into the DPM training [20, 19].
Parts are modeled as having 3D locations, resulting in de-
formations that are 3D, and the mixture components capture
different poses or aspects. While these models capture the
physical basis of deformations, they require part level su-
pervision. In contrast, we are interested in the case when
such supervision is not available.

Other ways of sharing parameters have also been inves-
tigated. Bilinear models can be used to factorize part filters
into basis filters and weights that can be learned together
[22, 21]. Such parameter sharing provides small improve-



ments. Information can also be transferred from one cate-
gory to another [1, 16]. Aytar and Zisserman [1] use a model
trained on one category to regularize training in a differ-
ent category, while [16] transfers actual transformed train-
ing examples from one category to another. Endres et al.
[9] shares “body plans” between object categories, where a
body plan specifies an arrangement of parts.

Outside of object detection, the notion of deformations
has surfaced time and again in the vision community. Many
of the ideas in this paper echo active appearance models [4],
where face landmarks are allowed to deform, and the ap-
pearance after deformation is modeled separately. Winn and
Jojic [25] propose a generative model for recognition that
uses a deformation field to model intraclass variation. How-
ever their approach requires rich MRF priors and is limited
to simple uncluttered scenes, while we tackle the full-blown
object detection problem.

Since it is hard to match pixels across disparate images,
[17] propose to use discriminative SIFT features to do the
mapping, an idea this work builds upon. A lot of work
in image classification and/or matching, for instance [8, 3],
warps and aligns images for the purpose of computing sim-
ilarities. Liu et al. [18] use HOG features to align and clus-
ter images and Drayer and Brox [7] try to match object in-
stances using HOG features with the aim of aligning them.
However, such alignment is difficult in the cluttered and oc-
cluded scenes that are common in object detection settings.

3. Model Overview
Let us begin by considering a typical object detector

based on HOG-templates [5]. Given a weight vector w, we
can compute the score of an image window by computing its
HOG features x and doing a dot product with w. However,
the template and feature vector have a spatial structure: they
are divided into a grid of cells. We can make this explicit by
writing the features in cell (i, j) as xij and the correspond-
ing weights as wij . Using this notation, the matching score
is given by:

fw(x) =
∑
i,j

wT
ijxij (1)

In our approach, we want to construct a detector in which
the HOG templates can deform. We accomplish this by al-
lowing each HOG cell in the template to move as a unit. A
deformation can then be written as a flow field defined over
the cells in the template. A cell (i, j) moves to the location
(i + uij , j + vij) where (uij , vij) is the flow at (i, j). The
score of the deformed template can then be written as:

fw(x) =
∑
i,j

wT
i+uij ,j+vijxij (2)

The above assumes a discrete flow, where each uij and vij
is integral. However, this is not necessary. We can allow a

continuous flow with real values for uij and vij using bilin-
ear or bicubic interpolation to deform w. In general, given
a continuous flow field (u, v), we can represent the score
given by a deformed template as:

fw(x) =
∑
i,j

(∑
k,l

αij
klw

T
kl

)
xij (3)

The coefficientsα are the mixing weights overw and are de-
termined by the flow field (u, v). In practice they are quite
sparse. Note that the above equation is still linear in both w
and x; this allows us to write fw(x) as:

fw(x) = wTDx (4)

The (sparse) matrixD is determined by the flow field (u, v).
The description of how we find our candidate flow fields is
deferred until Section 4.

Our model considers the deformation as a latent variable
and maximizes the score over possible deformations:

fw(x) = max
D∈D

wTDx+ wT
d ψ(D) (5)

Here D is our deformation dictionary containing a set of
candidate deformations and the term wT

d ψ(D) allows us to
score each deformation D ∈ D. This is useful, as some
deformations are more likely than others. In practice we
use an indicator function for ψ(D); thus wT

d ψ(D) amounts
to assigning each D a bias.

Note that the linear nature of Equation 5 means that we
can interpret it either as a fixed template w acting on a de-
formed feature vector Dx, or a deformed template DTw
acting on x. The latter interpretation implies that at test time
this model can be seen as choosing from a set of templates
DTw, one for each D ∈ D.

3.1. Augmented Model

Taking inspiration from the DPM [11], we augment our
model with a few additions. We add a “coarse” root tem-
plate wr that does not deform, in addition to the “fine” tem-
plate wf which does:

fw(x) = wT
r x+ max

D∈D
wT

f Dx+ wT
d ψ(D) (6)

Moreover, while our deformation dictionary allows us to
capture a range of deformations, it cannot handle very large
or extreme deformations, e.g., changing viewpoint from the
front to the side view of a car. To capture such large de-
formations we utilize a mixture model over aspect ratios
similar to [11]. Specifically, we use a separate model f cw(x)
of the form given in Eqn. 6 for each mixture component c.
Our final model takes on the form:

fw(x) = max
c
f cw(x) (7)

To summarize, our model is composed of a mixture of com-
ponents c where each component is equipped with:



1. wc
r: a single “coarse” root template capturing the gen-

eral appearance of that aspect.
2. wc

f : a single “fine” template that is at twice the resolu-
tion of the coarse template.

3. Dc ∈ Dc: A set of deformations that can be applied to
the fine template wc

f to produce deformed templates.
4. wc

d: a vector of weights for scoring the deformations.

We emphasize that there is a separate set of weights and
deformations for each component (e.g., the front and side
views of a car will have their own set of deformations).

3.2. Training

Equations 6 and 7 are simply a specific form of the gen-
eral class of latent variable models [11]:

fw(x) = max
z
wTφ(x, z) (8)

Therefore, given a deformation dictionary D for each com-
ponent, the model can be trained using a latent SVM [11].
For the sake of completeness, we briefly describe the train-
ing algorithm here. The training objective takes the form:

min
w

1

2
‖w‖2 + C

∑
i

(1− yifw(xi)) (9)

Separating the loss into the loss over positive and negative
examples and expanding fw(x) using (8), we get:

min
w

1

2
‖w‖2 + C

∑
i∈−

(1 + max
z
wTφ(xi, z))

+ C
∑
i∈+

(1−max
z
wTφ(xi, z)) (10)

All terms except the last are convex and the last term
becomes linear (and hence convex) once we fix the latent
variables for the positives. Hence, following [11], we train
the model by iterating between finding the latent variables
for the positives, and optimizing over the resulting convex
objective. The optimization of the convex objective is it-
self an iterative process and requires running over negative
training images and collecting hard negatives.

3.3. Relationship to Other Models

We described our model with the assumption that a de-
formation dictionary of candidate flows is given. In the next
section, we will describe how we compute our dictionary.
However, we note that it is possible to express deformable
part models and even other proposed models such as [15]
as a special case of Eqn. 4. This is because each placement
of the parts in a DPM corresponds to a particular flow field,
and so the DPM corresponds to allowing D to be the (expo-
nentially large) set of all possible part placements. We can
thus compare our model to these other deformable models:

Figure 2: Top: from left to right, an exemplar bicycle, its
WHO (whitened HOG [13]) features x, and the template
after applying the projected deformation to the average bi-
cycle template DT x̄. Middle: the average bicycle template
x̄, and the projected flow D on to the top k = 5 PCA bases.
Bottom: color coding for the flow fields shown in this paper,
and the raw flow D∗ estimated using block matching.

Size of D: Our model uses a small deformation dictio-
nary, whereas part based models and models like [15] al-
low an exponentially large number of deformations. For in-
stance, a DPM allows 81 possible placements for each part,
and since the 9 parts are independent, one gets 819 possible
deformations. A larger D allows one to capture a larger
number of poses, even ones not seen at train time [27].
However it might also introduce implausible deformations
that increase the number of false positives (see Figure 1).

Form of D: The inability to synthesize an exponential
number of templates may not matter as long as we capture
the common deformations in the data. On the other hand,
a DPM places parts using simple heuristics, ignoring the
structure of the object category. A small set of deforma-
tions that are estimated in a data-driven manner might in
fact end up covering the space better than an exponentially
large set of heuristically determined deformations.

Form of ψ(D): An exponentially large D also forces one
to score deformations in a way that allows efficient infer-
ence. For instance, parts in a part based models have to be
arranged in a tree structure or else inference is intractable,
but a tree structure might assign high scores to inconsistent
part placements and implausible deformations. In contrast,
our model can learn a bias for every deformation and simply
penalizes unlikely deformations.

4. Generating the Deformation Dictionary
We want to create D in a data driven manner, captur-

ing the observed deformations while excluding unlikely or
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Figure 3: Top: The k = 5 estimated flow bases for bicycles.
Middle/Bottom: the m = 10 centroids obtained by cluster-
ing bicycle templates in the projected space. See text.

implausible deformations. However, the training data does
not come with annotated deformations, so our first task is to
estimate the deformations present in the training data.

Given two feature vectors x1 and x2 in HOG space, our
goal is to compute a coarse flow field (u, v) that best de-
forms x1 into x2. In other words, for each cell in x1 we
want to find a likely “target” cell in x2. We do this us-
ing a simple block-matching approach. For each cell (i, j)
in x1, we take a 5x5 patch centered on (i, j) and find the
best matching location (i′, j′) in x2 in its local neighbor-
hood (±2 cells). The resulting flow is ui,j = j′ − j and
vi,j = i′ − i.

In order to measure the quality of a match, we use the
dot product between the 5x5 HOG templates in x1 and x2
as the scoring function. Finally, we observe that the flow
fields can be better estimated using whitened HOG fea-
tures (WHO) [13]. Whitening HOG suppresses correlations
across cells and has proven useful in a number of scenarios.

4.1. Generating Candidate Deformations

Given a set of examples belonging to a single component
or aspect, we can compute the flow as above between the
mean whitened feature vector x̄ and each of the examples.
Using these individual deformations, we define a two stage
procedure for generating the deformation dictionary D.

Regularization. The individual flow fields tend to be
noisy and have large discontinuities (each cell may move
independently). However, we have a large set of flows, and
this allows us to regularize the result. We do PCA on the
flows and project each flow to the top k = 5 PCA axes. This
makes each flow smoother and allows for subpixel flows.

Figure 2 shows the raw and regularized flows, denoted by
D∗ and D respectively1, for a single bicycle exemplar. The
WHO feature vector x has a non-trivial deformation rela-
tive to the mean template x̄ resulting from the out-of-plane
rotation of the front wheel. The projected flow D removes
much of the noise from the raw flow D∗ while preserving
the overall deformation. Observe the warped templateDT x̄
matches the feature vector x better than x̄.

1In a slight abuse of notation we use D to refer to both the flow field
and its corresponding deformation matrix.
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Figure 4: Top: The top k = 5 estimated flow bases obtained
by computing PCA over flows from all categories. Mid-
dle/Bottom: the m = 10 centroids obtained by clustering
bicycle templates in the common projected space. The flows
obtained are much smoother than in Figure 3; on the other
hand, some category specific deformations may be missed.

Clustering. To select a set of representative flows we
cluster the projected flows into m = 10 clusters using K-
Means. We use the mean flow in each cluster as a candidate
deformationD, thus forming our deformation dictionaryD.

Figure 3 shows the top k = 5 PCA bases for the bicycle
category (top row) along with the m = 10 cluster centers
(middle/bottom rows). Observe that the flows capture com-
plex motions such as scaling and foreshortening effects that
cannot be explained by simple part translations. Moreover,
the flows are smooth implying that the deformed templates
will retain their holistic appearance and won’t ‘fall apart’,
as is often the case with independently moving parts.

4.2. Shared Deformation Bases

While we expect each category to deform in unique
ways, there may be groups of categories that deform sim-
ilarly (e.g. bicycles and motorbikes). Moreover, some reg-
ularities will be common to all categories. This suggests
that deformation bases can be shared among subsets or even
across all categories. Additionally, utilizing a common ba-
sis may help regularize the estimated deformations, espe-
cially when there are few training examples.

To see if this intuition is correct, we perform experi-
ments on PCA bases constructed using deformations pooled
across similar categories and also across all categories.
Then for each category, as before, we project the exemplar
deformations to the top 5 PCA axes and cluster the deforma-
tions to produce the deformation dictionary D. This allows
each category to share the space in which the clustering is
performed while retaining its own unique dictionary.

Figure 4 shows the 5 PCA bases computed across all
categories and the resulting deformation dictionary for bi-
cycles (contrast with Figure 3). Note how they are smooth
and capture non-trivial deformations, but may fail to cap-
ture some category specific details. Detailed experiments
using shared deformation bases are given in Section 5.3.



Figure 5: Visualizations of the learned model for bicycle (top), car (middle) and horse (bottom). Each row shows 5 (of 10)
templates from one of the components in the model. All templates in a row are produced by deforming a canonical template.

5. Results
Like part models, our model shares parameters across

several templates, but unlike part models, it does not allow
for an exponential set of deformations. We do experiments
to evaluate the impact of these two aspects of our model.
Our first set of experiments compares against different types
of mixture models and shows that parameter sharing plays
a critical role. In our second set of experiments we compare
to part-based models and show that our model can match
(and improve upon) part-based models with our small but
carefully constructed deformation dictionary.

In our final set of experiments, we evaluate the impact
of sharing the deformation bases across multiple categories
and show that such sharing can be beneficial.

We do all our experiments on the PASCAL VOC 2012
set [10]. We train all models on the train set and report
average precision (AP) on the validation set. We use a
re-implementation of the original DPM work [11] that we
found easier to modify. We do non-max suppression on top
of the output of the detector and clip the detected boxes to
the image boundary, but do not do bounding box regres-
sion. Detection takes 4.4s using our model (implemented
as a vanilla mixture model) compared to 3.6s for DPM.

5.1. Parameter Sharing

How important is parameter sharing for detection? We
examine this question using several baselines that are com-
parable to our approach but do not share parameters. Let n
denote the number of components; each component has a
low-resolution root filter and m high-resolution fine filters
computed using the same HOG template with m discrete
deformations. We propose three baselines:

method bike (100 samples) bike (full data)
n-component 30.4 40
nm-component 26 –
n-comp×m fine 36.2 44.8
Ours 38.9 46.5

Table 1: Comparison to various baseline models trained
with varying amounts of data, see text for details.

1. An n-component model, with each component having
just a low-resolution root filter. This model lacks the
high-resolution filters and deformations.

2. An nm-component model, with each component hav-
ing just a low-resolution root filter. This baseline is a
standard mixture model with as many components as
we have high-resolution templates.

3. An n component model where each component has a
root filter andm high-res templates trained without pa-
rameter sharing. This baseline is closest to our model
but the templates are not related by deformations.

We train the models on both the full training set and a
subset of 100 examples to gain insight into performance
with low amounts of training data. In both experiments we
set m = 10 and we use n = 3 components for the full
training dataset and n = 1 for the smaller dataset.

Results on bicycles are shown in Table 1. As expected,
the n-component model performs poorly, since a small
number of components is not enough to capture intra-class
variation. The nm-component model performs worse, as
it severely overfits (on the full data training failed to con-
verge due to overfitting issues). Using n components with
m templates per component does significantly better, but is



n-comp n-comp DPM ours ours
×m-fine -common

plane 27.3 32.0 40.5 36.6 35.8
bike 40.0 44.8 45.2 46.5 46.9
bird 1.3 3.0 1.9 4.2 4.4
boat 4.5 4.3 4.0 5.4 4.9
bottle 16.4 17.6 19.2 20.1 20.7
bus 47.3 55.1 53.0 54.9 55.3
car 27.3 36.4 35.3 36.3 35.5
cat 9.1 17.8 18.6 19.8 19.7
chair 7.1 9.8 14.6 11.7 11.5
cow 5.9 11.3 10.3 13.4 12.3
table 2.9 6.0 3.9 8.9 8.0
dog 5.8 7.1 10.7 7.3 7.7
horse 23.5 33.5 32.9 35.6 34.7
moto 27.1 26.4 31.4 31.1 30.8
person 28.2 36.7 38.5 36.4 36.8
plant 1.7 4.3 4.0 6.6 5.1
sheep 23.5 25.6 25.5 27.0 27.0
sofa 5.4 7.8 11.6 11.0 13.6
train 22.0 33.3 32.7 35.0 32.9
tv 21.3 33.4 34.2 32.7 31.9
mean 17.4 22.3 23.4 24.0 23.8

Table 2: Average Precision (AP) on PASCAL VOC Val
2012. The first 2 columns are the mixture model baselines
described in Section 5.1. The 3rd and 4th columns show
results for DPM and our approach. The last column shows
results with our model using a common deformation basis.

outperformed by a large margin by our model.
Results for all categories on the full set are in Table 2.

We omitted the nm-component model owing to overfitting
issues. DPM (column 3) and our approach (column 4) both
share parameters and do much better than the two mixture
model baselines, clearly demonstrating the benefit of pa-
rameter sharing.

5.2. Comparison with Part Models

Do we need an exponential number of deformations as
in the DPM to get good performance? Figure 1 provides
some intuition. The figure shows a small set of templates
sampled from a trained DPM model (sampled from among
the exponential number of possible templates). For compar-
ison, we also show the HOG templates in our trained model.
Since the part locations in the DPM are independent given
the root node, many of the possible part locations that the
DPM scores highly are actually implausible. The HOG tem-
plates in our model appear more realistic. Figure 5 shows
additional templates from our models.

Our model produces more plausible HOG templates, but
the number of candidate deformations is much smaller. Is it
still able to capture an adequately broad set of deformations
for accurate detection? To answer this question, we com-
pared our approach (n = 3,m = 10) with the DPM on all

Figure 6: Precision/recall curves for car (left) and person
(right) using our model (red) and the DMP (blue). Our
model typically has higher precision with lower recall.

categories in the VOC 2012 validation set. The results are
shown in Table 2. On average, our approach slightly outper-
forms the DPM, improving AP in 13 out of 20 categories.

This is a surprising and perhaps counter-intuitive result
since part-based deformation models provide greater flexi-
bility in handling deformations. Our conjecture is that while
our model might not capture all possible deformations and
thus may miss some objects, it is better able to prune out
some spurious deformations that can lead to false positives.
Examining the precision/recall curves for the various ob-
jects supports this hypothesis. Figure 6 shows representa-
tive curves for a class (car) where we see improvement and
one (person) that we do not. In both cases, we see a boost
in precision and a reduction in recall. However, in aggre-
gate across categories the boost in precision outweighs the
reduction in recall, leading to improved results in AP.

5.3. Deformation Generalization

While one should expect different categories to deform
in different ways, we also expect there to be some regulari-
ties, such as smoothness. In addition, there may be groups
of categories that deform similarly, for example, we may ex-
pect bicycles and motorbikes or cows and sheep to occur in
similar poses. This suggests that some or all of these cate-
gories may share deformation bases. Sharing the bases may
also help regularize the estimated deformations, especially
when there are fewer training examples.

To see if this intuition is correct, we constructed PCA
bases by pooling (a) all deformations seen across all cate-
gories and (b) deformations seen in similar categories (mo-
torbike, bicycle and cow, sheep). Figure 4 shows the PCA
bases computed across all categories and the resulting de-
formation dictionary for bicycles, see Section 4 for details.
Since there is a large imbalance in training examples of peo-
ple versus other categories, we do not include the person
category when computing the shared PCA bases.

The last column in Table 2 shows the results we achieve
if we use a single PCA basis across all categories on PAS-
CAL VOC 2012 with the same parameters as before (n =



category category- common super- DPM
specific category

Bicycle 46.5 46.9 47 45.2
Motorbike 31.1 30.8 31.6 31.4

Cow 13.4 12.3 13.7 10.3
Sheep 27 27 26.9 25.5

Table 3: Impact of clumping together similar categories for
computing deformation basis.

3,m = 10). Interestingly, using a common PCA basis
only causes a small drop in AP, but we are still on par with
DPM, indicating that the deformations in different object
categories do have a lot in common.

A common set of PCA bases is also likely to be less noisy
in cases of insufficient training examples. When training
bicycles with only 100 examples, a common basis achieves
an AP of 39.6 versus an AP of 38.9 for a category-specific
basis (DPM achieves an AP of 39.4 on the same data).

We also hypothesize that similar categories can benefit
from sharing deformations. Table 3 shows the performance
if we share the deformation basis between motorbike and
bicycle and between cow and sheep. In each case accuracy
improves, and in most cases AP is even higher than using a
category specific deformation basis.

6. Discussion
In this paper, we have proposed using a discrete set of

deformations. However, we can also search for the optimal
deformation within the space defined by our set of 5 PCA
bases. Using a greedy search technique, we were able to
obtain similar results to that of our discrete model. While
the discrete approach is more computationally efficient, it
may prove beneficial to search in a continuous space of de-
formations for some object categories.

In conclusion, we propose an approach to object detec-
tion that models deformations and appearance separately.
We do so by constructing a deformation dictionary contain-
ing a discrete set of candidate flow fields. Interestingly, our
model using a small number of deformations is able to im-
prove upon the performance of part-based models that are
capable modeling a exponential number of deformations.
In addition, we show that sharing deformation information
across categories can lead to improved performance.
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